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SECTION A

1. Travelling waves in predator-prey Consider the spatial Lotka-Volterra system
on a one dimensional domain, the whole real line, with coordinate x ∈ R:

∂u

∂t
= D1

∂2u

∂x2
− αuv, (1)

∂v

∂t
= D2

∂2v

∂x2
+ βuv.

Here D1, D2 are constant positive diffusion coefficients and the interaction constants
α and β are also positive.

(a) Consider travelling wave solutions to (1) in the form u(z), v(z) where z = x−ct.
Show that under this assumption the equations take the following form

D1
d2u

dz2
+ c

du

dz
− αuv = 0,

D2
d2v

dz2
+ c

dv

dz
+ βuv = 0.

(b) The predator v invades the prey environment in which initially there is a ho-
mogeneous prey population u0. We assume a small predator invasion in the
form

u(z) = u0 − εuceλz,
v(z) = εuce

λz,

where λ is real for a valid travelling wave disturbance. Find the O(ε) equations
for λ under this assumption.

(c) Assume the interaction constants are identical and that both populations dif-
fuse at the same rate. Show that the minimum velocity c for a valid travelling
wave solution is

cmin =
√

4D1αu0.
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2. Fourier transform solution of a P.D.E Consider the following P.D.E. and its
fundamental problem:

∂c

∂t
= tnD

∂2c

∂x2
, c(x, 0) = δ(x), c(±∞, t) = 0, (2)

with n > 0. Here δ(x) is the Dirac delta distribution and D > 0. We define the
Fourier Transform as

F [c](k) =
1√
2π

∫ ∞
−∞

e−ikxc(x)dx,

and its inverse as

F−1[c](x) =
1√
2π

∫ ∞
−∞

eikxc(k)dk.

(a) Show that the solution to (2) in Fourier space is

F [c](k) =
1√
2π

e−
Dk2tn+1

n+1 .

(b) Find the solution in real space c(x, t). You may use the following identity

F [e−ax
2

](k) =
1√
2a

e−k
2/4a.

(c) Compare this solution to the fundamental solution of the standard diffusion
equation n = 0, focusing on the physical plausibility of the solution and the
difference in the solution’s expansion as a function of time.

3. Population modelling Consider the following model for the interaction of popu-
lation densities u(t), v(t),

du

dt
= u−

[
u2 + v2 − c/4

]
, (3)

dv

dt
= v(1− v), (4)

where c > 0 is a positive constant.

(a) Describe the terms on the right hand side of the system. Pay attention to
which terms are self interactions or mutual interactions. Treat the term in
square brackets as one type of interaction.

(b) Find all physically permissible equilibria of the system.

(c) Argue why the equilibria for which v = 0 are unstable. You may freely state
any facts from the course notes and need not perform a stability analysis.
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4. Turing analysis Consider the following non-dimensionalised reaction-diffusion
system for scalar densities u and v

∂u

∂t
= ∇2u+ γF (u, v), (5)

∂v

∂t
= D∇2v + γG(u, v),

where D and γ are positive constants. We assume no-flux boundary conditions on
a Cartesian domain [0, L1]× [0, L2] with coordinates (x1, x2). The Turing conditions
for pattern formation are

Fu +Gv < 0, FuGv −GuFv > 0, (6)

Gv +DFu > 0, (Gv +DFu)
2 − 4D(FuGv −GuFv) > 0,

where we have used the notation

Fu =
∂F

∂u

∣∣∣∣
u=u0,v=v0

, Fv =
∂F

∂v

∣∣∣∣
u=u0,v=v0

,

Gu =
∂G

∂u

∣∣∣∣
u=u0,v=v0

, Gv =
∂G

∂v

∣∣∣∣
u=u0,v=v0

,

and (u0, v0) represent a homogeneous equilibrium of the system.

(a) Define what is meant by a pattern in this context, give the explicit mathemat-
ical form for the pattern and describe what the conditions (6) enforce.

(b) A particular version of (5) can be used to model a growing animal epithelial
layer. Assume the growth is modelled as uniform continuous (in time) increase
of the domain lengths L1 and L2. Consider an equilibrium (u0, v0) of this
system and assume it is independent of the value of the lengths L1 and L2.
Assume the changing lengths do not change the constants D, γ or the functions
F and G and finally that the growth is sufficiently slow that the system remains
in equilibrium under this growth (if the equilibrium is stable).

For some initial lengths L1 and L2 the Turing conditions (6) are satisfied,
however, no patterns are formed. Then, when the lengths increase to some
value aL1 and aL2, a > 1, a pattern of spots forms. Explain why the pattern
formation is delayed until the length has increased, despite always satisfying
the Turing conditions. You should use your answer to part (a).
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5. Lotka-Volterra Periodicity Consider the non-dimensionalised Lotka-Volterra equa-
tion for densities u(t), v(t),

du

dt
= u− uv,

dv

dt
= γ(−v + uv),

with γ > 0 a constant.

(a) Show that the system can be integrated to give

log(v)− v = −γ(log(u)− u) + C,

where C is a constant of integration.

(b) Use the result of (a) to demonstrate that the solutions to the Lotka Volterra
system are periodic close to the equilibrium (u, v) = (1, 1). To do so you may
use the fact that for some two-dimensional surface F (u, v) a local extremum is
a local maximum if the function

D =
∂2F

∂v2

∂2F

∂u2
−
(
∂2F

∂u∂v

)2

,

is positive and ∂2F
∂u2 < 0.
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6. The Acetabularia model Consider a model for hair tip growth from an Acetab-
ularia cell stalk. We model the stalk in its cross-section as an annular domain with
polar coordinates (r, θ). A morphogen represented by a chemical density u(r, θ, t)
generates hair growth in a given region if u > uc for some critical value uc. Its dis-
tribution is controlled by a source of calcium density v(r, θ, t) and their interaction
is modelled by the following system.

∂u

∂t
= ∇2u+R2(a− u+ u2v), (7)

∂v

∂t
= D∇2v +R2(b− u2v),

where D > 0 is the constant ratio of diffusion of u and v, R is a constant proportional
to the mean radius of the stalk and b ∈ R+, a ∈ R are also constants. In particular
b represents the calcium concentration of the surrounding solvent. It is believed the
spontaneous hair formation can be modelled by a Turing instability of this system
where both u and v have no flux boundary conditions.

(a) Find the homogeneous equilibrium (u0, v0) of (7).

(b) Solutions for u to the linearised system of (7) in the neighbourhood of this
equilibrium take the form

AJn(knr) cos(nθ)eλ(kn)t,

for some constant A > 0, n an integer and kn ≥ 0 constant. Here Jn is the
nth Bessel function of the first kind. Assume the domain is thin i.e. r ∈
[R − ε, R + ε], ε � R. It can be shown under this assumption that kn = n to
a good approximation. Assume further that uc > u0 , that there is only one
value of kn for which λ(kn) > 0 and that this kn ∝ R. What is the expected
relationship between the stalk’s radius and the pattern of hair growth?

(c) The Turing conditions of this system can be shown to be satisfied if the fol-
lowing two inequalities hold

a <
u0

2

(
1− 2u0√

D
− u2

0

D

)
, a >

u0(1− u2
0)

2
. (8)

Argue, based on these inequalities, that if D > 1 tip growth is promoted when
the surrounding calcium concentration belongs to an interval b ∈ [bl, bh] but is
suppressed otherwise.
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SECTION B

7. Turing Analysis Consider the following non-linear reaction diffusion system for
the interaction of a bacterial species, via its population density u and its food source,
represented by a population density v,

∂u

∂t
= ∇ · (uv∇u) + γF (u, v),

∂v

∂t
= D∇2v + γG(u, v),

where the constant D is the ratio of diffusion constants of v and u, and γ is also a
positive constant. We assume the domain V is Cartesian, m-dimensional, and that
all density fluxes vanish on its boundary.

(a) Write equations expressing the boundary conditions.

(b) What are the conditions on u and v for the solutions to be physically valid?

(c) State the equations which would determine the homogeneous equilibria (u0, v0)
of this system.

(d) Carry out a Turing analysis for this system to show there will be a growing
inhomogeneous pattern when

Fu +Gv < 0, FuGv − FvGu > 0, (9)

Gvu0v0 +DFu > 0, (Gvu0v0 +DFu)
2 − 4u0v0D(FuGv − FvGu) ≥ 0.

Here we have used the notation

Fu =
∂F

∂u

∣∣∣∣
u=u0,v=v0

, Fv =
∂F

∂v

∣∣∣∣
u=u0,v=v0

,

Gu =
∂G

∂u

∣∣∣∣
u=u0,v=v0

, Gv =
∂G

∂v

∣∣∣∣
u=u0,v=v0

.

(e) Consider the following reaction functions,

F (u, v) = u2 − v2/a2, G(u, v) = sin(u) sin(v), (10)

for a > 0 with a constant. Find all physically valid homogeneous equilibria and
show that none of them can satisfy the Turing conditions.

(f) Give the physical interpretation of the specific reason the Turing conditions
were not satisfied in part (e).
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8. Species interaction Consider the following purely temporal model for the expan-
sion of bacterial colony u(t) into an environment filled with a food supply v(t):

du

dt
= au− b sin(u) sin(v), (11)

dv

dt
= cv

(
1− uv

d

)
,

where a, b, c, d are positive constants. The solutions u(t), v(t) should be positive to
be considered physically valid.

(a) Show that we can introduce scaled variables û, v̂, t̂ such that the system (11)
can be written as

dû

dt̂
= û− β sin(dû) sin(v̂), (12)

dv̂

dt̂
= γv̂ (1− ûv̂) ,

where γ = c/a and β = b/ad.

(b) Find all equilibria of the system (12) for which at least one of the bacteria/food
supply is extinguished. Perform a linear stability analysis of these equilibria.

(c) Show that, in order for the bacteria to be in equilibrium with a non-zero food
supply, its population must satisfy.

û = β sin(dû) sin(1/û), (13)

and argue that this implies we require βd > 1 for such equilibria to exist.

(d) Observations of an example bacterial colony for which this model is intended
indicate that the variables u and v should exhibit limit cycle behaviour. As-
sume this can occur in the model when there is an equilibrium du0 = π/2
satisfying (13). Show, using a linear stability analysis, that limit cycles close
to this equilibrium must satisfy the following inequality

2

nπ
> û >

2

(n+ 2)π
,

where n = 4k + 1 . . . for integer k ≥ 0.
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9. Chemotaxis and pattern formation Consider the following one-dimensional
chemotactic slime mould model,

∂n

∂t
= −α ∂

∂x

[
χ(n, c)

∂c

∂x

]
,

∂c

∂t
=
∂2c

∂x2
+ nc(1− γn),

where α and γ are positive constants. Here n(x, t) is the slime mould density and
c(x, t) the chemotaxant density and χ(n, c) is a smooth function which determines
the chemotaxic behaviour. We consider the model on a Cartesian domain x ∈ [0, L].

(a) If we assume that c has a spatially homogeneous profile, then show there exists
a non-zero homogeneous equilibrium for n, which we label n0. Then, assuming
c initially takes a value c(0) = 1, show that

c(t) = en0(1−γn0)t.

(b) Now consider small spatial variations around this solution in the form

n(x, t) = n0 + ε
∞∑
n=0

fkn(t)eiknx, c(x, t) = c0(t) + ε
∞∑
n=0

gkn(t)eiknx,

c0(t) = en0(1−γn0)t,

where ε� 1 and kn = nπ/L. Show that, for each kn, the O(ε) equations are

dfkn

dt
= k2

nαχ0(n0, c0)gkn ,

dgkn

dt
= −k2

ngkn + (1− γ2n0)e
n0(1−γn0)tfkn + n0(1− γn0)gkn ,

(c) Consider the case n0 = 1/(2γ). Solve to find g(t) and give its interpretation in
terms of mode growth.

(d) Now assume also χ(n, c) = nc. Consider two sets of boundary conditions. First
no-flux boundary conditions

∂n

∂x
(0, t) =

∂n

∂x
(L, t) =

∂c

∂x
(0, t) =

∂c

∂x
(L, t) = 0,

and second, zero Dirichlet boundary conditions,

n(0, t) = n(L, t) = c(0, t) = c(L, t) = 0.

State in each case whether pattern formation can occur and if so, state the
conditions on the domain length L for pattern formation to occur.
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Figure 1: Solutions θ(s) to (15) used in question 10(f).

10. Elastic rods Consider a thin slender body whose central axis is represented by
a curve r(s) : [0, L] → R3, where s is the body’s arclength. The coordinates of
R3 take the form (x, y, z) with unit vectors x̂, ŷ and ẑ respectively. A force n(s)
represents the internal force acting on each cross-section of the the body and m(s)
represents the internal couple acting on each cross section. Net forces and couples
can be applied at s = 0 and s = L.

(a) Demonstrate using force and moment balance that the equilibrium equations
for this body are

dn

ds
+ f = 0,

dm

ds
+

dr

ds
× n + l = 0,

where f is an external force per unit length acting on the body and l an external
couple per unit length acting on the body.

(b) For all permissible configurations the curve r(s) can, for some vector u(s), be
determined by solving the following system of differential equations

dr

ds
= d3,

d

ds
dj = u× dj, u = u1d1 + u2d2 + u3d3,

(up to a choice of initial conditions). Here d3 is the unit tangent vector of r
and d1 and d2 form an orthonormal frame with d3.

What does this imply about the slender rod with regards to its potential de-
formation?

(c) Assume the rod is in equilibrium and subjected to a gravitational body force
f = −gẑ. Further assume there is no net force applied at s = L. Show that

n = g(s− L)ẑ.

(d) We now consider the following further restriction on its potential deformation.
The tangent vector is described by an angle function θ(s)

d3 = (cos θ(s), 0, sin θ(s)) .

Construct a right-handed orthonormal frame (d3,d1,d2) for the curve r on the
further assumption that it has no twist (u3 = 0).
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(e) Assume that there is no body moment l and the material couple m takes the
form

m = Bu1d1 +Bu2d2 + Cu3d3, (14)

where B and C are constants. Demonstrate that the moment equation reduces
to the following non-linear O.D.E.

B
d2θ

ds2
+ g(s− L) cos θ = 0. (15)

(f) Solutions to (15) are shown in Figure 1. These solutions are from a model for
a human hair hanging under gravity. Describe briefly the shape of the rod r(s)
for solution (a) and briefly comment on the difference one would expect to see
for rod (b).
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