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SECTION A

1. Let (Sk)2n
k=0 be a 2n-step trajectory of a simple symmetric random walk starting at

the origin (and making jumps ±1 with probability 1/2). Let

C2n
def
=

1

n+ 1

(
2n

n

)
=

(2n)!

(n+ 1)!n!
,

and consider the probabilities

u2n
def
= P(S2n = 0) , f2k

def
= P(S1 6= 0, S2 6= 0, . . . , S2k−1 6= 0, S2k = 0) .

(a) Show that u2n =
(
2n
n

)
2−2n and f2k = 2C2k−2 2−2k.

(b) Deduce that f2k = 1
2k
u2k−2 = u2k−2 − u2k.

(c) Use the result in part b) to show that

P(S1 6= 0, . . . , S2n 6= 0) = 1−
n∑

k=1

f2k = u2n .

2. (a) Carefully state the renewal theorem.

(b) Let (un)n≥0 be a sequence defined by u0 = 1 and, for n > 0, by un =
n∑

k=1

fkun−k,

where fk > 0 and
∑∞

k=1 fk ≤ 1.

i. Show that if
∑∞

k=1 ρ
kfk = 1 for some ρ > 0, then vn = ρnun, n ≥ 0, is a

renewal sequence generated by a probabilistic collection of weights.

ii. Show that as n → ∞, we have vn = ρnun → c, for some constant c > 0.
Express the value of this constant in terms of the sequence (fk)k≥1.

iii. If the constant ρ satisfies ρ > 1, deduce that un decays to zero exponentially
fast. (This improves the

∑∞
k=1 fk < 1 claim of the renewal theorem.)

3. (a) Let f : R → R be a convex real function and let ξ be a random variable with
finite mean. Prove Jensen’s inequality,

Ef(ξ) ≥ f
(
Eξ
)
.

(b) Let ξ be a random variable with E
(
|ξ|r
)
<∞ for some r > 0. Prove Lyapunov’s

inequality, (
E(|ξ|r)

)1/r ≥
(
E(|ξ|s)

)1/s
, where r > s > 0 .
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4. Carefully define order statistics for a sample of i.i.d. random variables.

Let X1 and X2 be independent Exp(1) random variables, and let X(1) and X(2) be
the corresponding order variables.

(a) Show that X(1) and X(2) −X(1) are independent and find their distributions.

(b) Compute E(X(2) | X(1) = x1) and E(X(1) | X(2) = x2), where x1, x2 > 0.

5. Carefully define the stochastic order 4 for random variables.

(a) Let X ∼ N (µX , σ
2
X) and Y ∼ N (µY , σ

2
Y ) be Gaussian random variables. In

the questions below, justify your answer by proving the result or giving a
counter-example.

i. If µX ≤ µY and σ2
X = σ2

Y , is it true that X 4 Y ?

ii. If µX = µY and σ2
X ≤ σ2

Y , is it true that X 4 Y ?

(b) Let X ∼ Poi(λ) and Y ∼ Poi(µ) be Poisson random variables with λ ≤ µ.

i. Show that X 4 Y .

ii. Show that E(Xm) ≤ E(Y m) for all m ≥ 0.

[Hint: Show that if Z is a random variable with values in
{
0, 1, 2, . . .

}
and

g( · ) ≥ 0 is an increasing function with g(0) = 0, then

E
(
g(Z)

)
=
∑
k≥0

(
g(k + 1)− g(k)

)
P(Z > k) . ]

6. Let π be a permutation of the set {1, 2, . . . , n}, chosen uniformly at random.

(a) If Am =
{
m is a fixed point of π

}
, find the probability P

(
Am1∩Am2∩· · ·∩Amk

)
for distinct 1 ≤ m1 < m2 < · · · < mk ≤ n.

(b) Let Sn be the number of fixed points of π. By using inclusion-exclusion or
otherwise, find P(Sn > 0) ≡ P

(
∪n

m=1Am

)
; deduce that P(Sn = 0) → e−1 as

n→∞.

(c) Show that, as n→∞, the distribution of Sn converges to Poi(1).
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SECTION B

7. For an n-sample
{
Xk

}n

k=1
from the uniform distribution on [0, 1], let X(k) and ∆(k)X

be, respectively, the kth order variable and the kth gap.

(a) For positive a find the limit P(nX(1) > a) as n → ∞. What does it tell you
about the large-n behaviour of nX(1) ≡ n∆(1)X?

(b) By using induction or otherwise, show that

P
(
∆(1)X ≥ r1, . . . ,∆(n+1)X ≥ rn+1

)
=
(

1−
n+1∑
k=1

rk

)n

if positive rk satisfy
∑n+1

k=1 rk ≤ 1. Deduce that all gaps ∆(k)X have the same
distribution. How big, on average, is the size of the typical gap ∆(k)X for
large n?

(c) Let ∆∗nX = mink ∆(k)X be the size of the minimal gap of the n-sample under
consideration. For positive a find the limit P(n2∆∗nX > a) as n → ∞. What
does it tell you about the typical size of the minimal gap ∆∗nX for large n?

8. Let (Xn)n≥1 be independent random variables with common Exp(λ) distribution,
λ > 0.

(a) Find a constant c such that P
(

lim sup
n→∞

Xn

log n
= c
)

= 1.

(b) Define Mn = max
1≤k≤n

Xk, the running record value at time n. Show that with

the same constant c as above,

P
(

lim sup
n→∞

Mn

log n
= c
)

= 1 .

(c) Compute the probability P(Mn ≤ x) and use your result to find a constant c
such that

P
(

lim
n→∞

Mn

log n
= c
)

= 1 .

In your answer you should clearly state every result you use.

[Hint: You may use without proof the following fact: If (xn)n≥1 are real numbers, mn ≡
max

1≤k≤n
xk, and a monotone sequence (bn)n≥1 increases to infinity as n→∞, then the sets

{n ∈ N : xn ≥ bn} and {n ∈ N : mn ≥ bn} are both finite or both infinite.]
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9. Let r balls be placed randomly and independently into n boxes. Denote by Xi the
number of balls in the ith box and by N the number of empty boxes.

(a) Show that E(n−1N) =
(
1− 1

n

)r
and Var

(
n−1N

)
→ 0 as n→∞.

(b) Find the fraction of the empty boxes in the limit when r/n→ c > 0 as n→∞.

(c) Show that P(X1 = k) =
(

r
k

)
(n− 1)r−k/nr and identify the limit, as n→∞, of

this probability under the assumption of part (b).

(d) Find the probability P(X1 = k1, X2 = k2); what happens in the limit n → ∞
under the assumption of part (b)?

10. Consider bond percolation on the hexagonal lattice (see the picture below), with
every bond independently open with probability p ∈ [0, 1].

(a) Carefully define the percolation probability θ(p); show that it is a non-decreasing
function of p and hence define the critical value pc.

(b) Show that θ(p) = 0 for p > 0 small enough; hence deduce that pc ≥ p′ for some
p′ > 0.

(c) Show that θ(p) > 0 for 1− p > 0 small enough; hence deduce that pc ≤ p′′ for
some p′′ < 1.
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