

EXAMINATION PAPER

Examination Session: May

2019

Year:

Exam Code:

MATH3281-WE01

Title:

Topology III

Time Allowed:	3 hours			
Additional Material provided:	None			
Materials Permitted:	None			
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.		
Visiting Students may use dictionaries: No				

Instructions to Candidates:	Credit will be given for: the best FOUR answers from Section and the best THREE answers from S Questions in Section B carry TWICE in Section A.	n A Section B. as many ma	arks as those
		Devilations	

Revision:

SECTION A

Use a separate answer book for this Section.

- 1. (a) Give the definition of a topological space. Explain what it means for a topological space to be Hausdorff.
 - (b) Show that if X is a Hausdorff topological space and $p \in X$ then $\{p\}$ is closed.
 - (c) Give an example of non-Hausdorff topological space X in which $\{p\}$ is closed whenever $p \in X$.
- 2. (a) State what it means for a topological space to be compact.
 - (b) Let $f: X \to Y$ be a continuous map between topological spaces X and Y, and suppose that X is compact. Show that $f(X) \subseteq Y$ is compact in the subspace topology.
- 3. (a) Suppose X and Y are topological spaces and $f: X \to Y$ is a function. State what it means for f to be continuous.
 - (b) Suppose $X = \{1, 2, 3\}$ and $Y = \{A, B\}$ are topological spaces with topologies τ_X and τ_Y given by

$$\tau_X = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}, X\}$$

and

$$\tau_Y = \{\emptyset, \{A\}, Y\}.$$

Find all functions $f: Y \to X$ which are continuous.

- 4. (a) State the definition of the Euler characteristic of a closed surface in terms of graphs drawn on it, sketching the steps of the argument as to why the definition is independent of the graph chosen.
 - (b) Let A and B be closed, triangulable surfaces, and denote by A#B their connected sum. State and prove a relationship between the Euler characteristics of A, B and A#B.
- 5. (a) Let (X, x_0) be a pointed space. State the definition of the fundamental group $\pi_1(X, x_0)$, including the group operations.
 - (b) Now assume X is a metric space, with metric $d: X \times X \to \mathbb{R}$. Define the metric space ΩX as the set whose elements are maps $f: [0,1] \to X$ with $f(0) = f(1) = x_0$ and metric D given by

$$D(f,g) = \operatorname{Sup}_{t \in [0,1]} \{ d(f(t), g(t)) \}.$$

Prove that if $\pi_1(X, x_0)$ is the group with one element then ΩX is path connected.

6. Let Δ be the space defined as the quotient of the solid triangle with vertices A, Band C given by identifying the sides $\overrightarrow{AB}, \overrightarrow{BC}$ and \overrightarrow{AC} (in those directions). Give a triangulation of Δ and use it to compute the fundamental group $\pi_1(\Delta)$, briefly explaining your calculations.

SECTION B

Use a separate answer book for this Section.

- 7. You may assume in this question that path-connected spaces are connected.
 - (a) Suppose X and Y are topological spaces with X connected and $f: X \to Y$ is continuous. Show that f(X) is connected in the subspace topology.
 - (b) Show that the connected components of $\{0\} \cup \{1/n : n = 1, 2, 3, ...\} \subseteq \mathbb{R}$ are those subsets containing single points.
 - (c) Consider the set

$$U = \{ (x, y) \in \mathbb{R}^2 : x > 0 \},\$$

and the (clearly continuous) function $m: U \to \mathbb{R}$ given by m(x, y) = y/x. For $n \ge 1$, let $L_n \subseteq \mathbb{R}^2$ be the closed straight line segment with endpoints (0, 0) and (1, 1/n). Consider

$$C = \{(1,0)\} \cup \bigcup_{n=1}^{\infty} L_n \subseteq \mathbb{R}^2.$$

Using m or otherwise show that if r > 0 and

$$p: [0,r] \to C \setminus \{(0,0)\}$$

is continuous with p(0) = (1, 0) then $p([0, r]) = \{(1, 0)\}.$

- (d) Hence or otherwise show that C is not path-connected.
- 8. (a) Let \mathbb{R}^+ be the topological group of positive real numbers with the group operation being multiplication. Show that

$$a \cdot (x, y, z) = (ax, ay, az)$$

(where $a \in \mathbb{R}^+$ and $(x, y, z) \in \mathbb{R}^3$) defines a topological group action of \mathbb{R}^+ on \mathbb{R}^3 .

(b) Since the orbit of (0,0,0) under this action just consists of itself, we may consider the action of \mathbb{R}^+ on $\mathbb{R}^3 \setminus \{(0,0,0)\}$. Show that the orbit space

$$(\mathbb{R}^3 \setminus \{(0,0,0)\})/\mathbb{R}^+$$

is homeomorphic to S^2 .

(c) Describe with justification all the open sets of $\mathbb{R}^3/\mathbb{R}^+$ which contain the orbit of (0,0,0).

- 9. (a) In this question we shall consider S^1 to be the unit circle in the complex plane $S^1 = \{z \in \mathbb{C}, |z| = 1\}$, and we recall that $\pi_1(S^1) = \mathbb{Z}$. If $f: S^1 \to S^1$ is a map, define the *degree* of f, denoted deg(f), to be the number $f_*(1) \in \mathbb{Z} = \pi_1(S^1)$. Suppose g is also a map $S^1 \to S^1$. Compute the degree of the composite $f \circ g$ in terms of deg(f) and deg(g).
 - (b) Let $a: S^1 \to S^1$ be the *antipodal map*, given by a(z) = -z. Compute deg(a) using any techniques from lectures you wish.
 - (c) By giving explicit maps $\alpha \colon \mathbb{C} \{0\} \to S^1$ and $\beta \colon S^1 \to \mathbb{C} \{0\}$, prove that $\mathbb{C} \{0\}$ is homotopy equivalent to S^1 .
 - (d) Given a map $\gamma \colon [0,1] \to \mathbb{C} \{0\}$ with $\gamma(0) = \gamma(1)$, define the winding number $w(\gamma, 0)$. Use your maps α and/or β to state a relationship between the notions of winding number and degree, briefly justifying your answer.
 - (e) Compute the winding number about the origin of the map $[0,1] \to \mathbb{C} \{0\}$ given by $t \mapsto 4e^{4\pi i t} + e^{2\pi i t}$.
- 10. (a) Recall that a closed surface is always compact, connected and without boundary. State the classification theorem for closed surfaces.
 - (b) Explain what is meant by a *non-separating closed curve* in a surface S. Explain the process of *surgery* along a non-separating closed curve, and what consequence this operation has to the Euler characteristic.
 - (c) Suppose S and R are closed triangulated surfaces and $f: S \to R$ is a simplicial map with the property that for each n-simplex σ in R, there are exactly r n-simplices in S which map to σ , each simplex mapping homeomorphically to σ . We call such a surface S an r-fold covering surface of R. What can you say about the relation of the Euler characteristics of S and R?
 - (d) Give examples of two (distinct) closed surfaces neither of which can have a 4-fold covering surface, using your answers to parts (b) and (c) to justify your answers.
 - (e) Let S be a 2-fold covering surface of R, and $f: S \to R$ the associated map. Suppose R and S are both orientable and that γ is a non-separating simple closed curve in R. Let ψ be the set of points in S which map by f to the points of γ , and suppose ψ is a non-separating simple close curve in S. If S' and R' are the surfaces obtained by doing surgery along ψ and γ respectively, can S' still be a 2-fold covering surface of R'? Justify your answer.