

EXAMINATION PAPER

Examination Session: May

2019

Year:

Exam Code:

MATH3301-WE01

Title:

Mathematical Finance III

Time Allowed:	3 hours			
Additional Material provided:	None			
Materials Permitted:	None			
Calculators Permitted:	Yes	Models Permitted: Casio fx-83 GTPLUS or Casio fx-85 GTPLUS.		
Visiting Students may use dictionaries: No				

	Instructions to Candidates:	Credit will be given for: the best FOUR answers from Section and the best THREE answers from S Questions in Section B carry TWICE in Section A.	n A Section B. as many ma	arks as those
--	-----------------------------	--	---------------------------------	---------------

Revision:

SECTION A

1. Consider a one-period financial market on two assets, where the risk-free asset price satisfies $B_0 = 1, B_1 = 4/3$ and the risky asset price satisfies $S_0 = 8$,

$$S_1 = \begin{cases} 12 & \text{with probability } 0.8\\ 6 & \text{with probability } 0.2. \end{cases}$$

- (a) Is this market arbitrage free? Explain your answer.
- (b) Show that this market is complete and find the replicating portfolio for a general contingent claim that returns A if $S_1 = 12$ and B if $S_1 = 6$.
- (c) A "secured investment" derivative is offered on this market, with price C > 0 at time 0, which returns the initial investment C if $S_1 < S_0$, and returns amount $(1 + \alpha)C$ if $S_1 \ge S_0$. Find the value of α necessary to avoid arbitrage.
- 2. Let C be the current price of a European call option with strike price K and expiry date T, and let P be the current price of a European put option on the same stock with the same strike price and expiry date. Assume that interest is compounded continuously at rate r. Show that P and C satisfy

$$P + S_0 = C + K \mathrm{e}^{-rT},$$

where S_0 is the current share price of the underlying stock.

- 3. Consider a financial market $\mathcal{M} = (B_t, S_t)$ on two assets. Suppose the current share price of the risky asset is $S_0 = 80$ and evolves according to the binomial model with $u = 1.25, d = 0.75, p_u = 3/4, p_d = 1/4$. Suppose that the current price of the risk-free asset is $B_0 = 1$ and the interest rate is r = 0.2.
 - (a) Calculate the risk-neutral measure for this market.
 - (b) Calculate the no-arbitrage prices at times t = 0, 1, 2 of a lookback call option on this market with payoff $S_T - S_{\min}$ at time T = 3.
- 4. (a) State the definition of a Brownian motion.
 - (b) Show that if $(W_t)_{t\geq 0}$ is a Brownian motion, then $(\frac{1}{2}W_{4t})_{t\geq 0}$ is also a Brownian motion.
 - (c) Show that if $(W_t)_{t\geq 0}$ is a Brownian motion, the process $W_t^3 3tW_t$ is a martingale with respect to the natural filtration $\{\mathcal{F}_t, t\geq 0\}$ of W_t .

- 5. (a) State Lévy's Theorem for recognising a Brownian motion.
 - (b) Suppose $(X_t)_{t\geq 0}$ and $(Y_t)_{t\geq 0}$ are two independent Brownian motions and define

$$U_t = \theta X_t + \sqrt{1 - \theta^2} Y_t$$
$$V_t = \sqrt{1 - \theta^2} X_t - \theta Y_t$$

where θ is a constant satisfying $0 < \theta < 1$. Show that $(U_t)_{t\geq 0}$ and $(V_t)_{t\geq 0}$ are both Brownian motions.

- (c) Are $(U_t)_{t\geq 0}$ and $(V_t)_{t\geq 0}$ independent? Justify your answer using the box calculus.
- 6. Suppose $X \sim N(0, \sigma^2)$ is a Normal random variable under the measure \mathbb{P} . Let \mathbb{Q} be an equivalent measure under which $Y = X + \theta \sigma^2$ is a Normal random variable with mean 0 and variance σ^2 .
 - (a) Find an expression for the Radon-Nikodym derivative $\frac{dQ}{dP}$ as a function of X.
 - (b) Calculate the expectation of $\frac{d\mathbb{Q}}{d\mathbb{P}}$ under the measure \mathbb{P} .
 - (c) Find $\mathbb{E}_{\mathbb{Q}}[e^{tY}]$.

SECTION B

- 7. The price of a risky asset over the time period [0,T] is modelled by an *n*-period binomial model with parameters $u = \exp(\sigma\sqrt{T}/\sqrt{n})$, $d = u^{-1}$ and $p_u = p_d = 1/2$, and initial price S_0 .
 - (a) Describe the distribution of the price of the risky asset at time T.
 - (b) Assuming an interest rate per step of rT/n, show that for large n the martingale probabilities for this model are approximately

$$q_u \approx \frac{1}{2} + \frac{(r - \sigma^2/2)\sqrt{T}}{2\sigma\sqrt{n}}, \quad q_d \approx \frac{1}{2} - \frac{(r - \sigma^2/2)\sqrt{T}}{2\sigma\sqrt{n}}.$$

- (c) Using the risk-neutral valuation formula, or otherwise, deduce the Cox–Ross–Rubinstein formula for the price at time 0 of a European call option on this asset with strike price K and expiry time T.
- (d) What happens to the formula in part (c) as $n \to \infty$? [Hint: For $X \sim Bin(n, p)$ with 0 ,

$$\mathbb{P}[X \ge x] \to N\left(\lim_{n \to \infty} \frac{np - x}{\sqrt{np(1 - p)}}\right) \quad \text{as } n \to \infty,$$

where $N(\cdot)$ is the cumulative distribution function of a standard Normal random variable.]

r I	Page number	-	-	٦ ١
	1 of 5			I
	4 01 5			I
				I
L		_	_	٦

8. Consider a 2-period financial market with possible share prices $S_t, t = 0, 1, 2$, of a risky asset given by the tree:

Suppose the interest rate per time step is $r = \frac{1}{5}$.

- (a) What is the price at time 0 of a European put option with strike price 55 and expiry time 2?
- (b) What is the price at time 0 of an American put option with the same strike price 55 and expiry time 2?

A Bermudan option gives the holder the ability to exercise the option only at predetermined times $T_1, T_2, \ldots, T_n = T$ up to the expiry time T.

- (c) What is the price at time 0 of a Bermudan put option with strike price 55 which can only be exercised at times 0 or 2? Comment on the relative sizes of the three prices you have calculated.
- (d) Prove that a Bermudan call option has the same price as a European call option with the same strike price and expiry time.
- 9. Consider the Black-Scholes model

$$\begin{cases} dB_t = rB_t dt, \\ dS_t = \alpha S_t dt + \sigma S_t dW_t \end{cases}$$

in the time horizon [0, T]. Here r is the risk-free interest rate, α and σ are two constants, and $(W_t)_{t>0}$ is a Brownian motion under the real world measure.

- (a) Describe the dynamics of S_t under the risk-neutral measure.
- (b) Find the solution of this SDE.
- (c) Find the no-arbitrage price at time t of the contingent claim $\Phi(S_T) = S_T^3$.
- (d) Calculate the hedging portfolio $(a_t, b_t)_{t \in [0,T]}$ that replicates the contingent claim in part (c).

- Exam code MATH3301-WE01
- 10. (a) State Itô's Lemma for a smooth function $f(t, X_t)$ of time t and an Itô process $(X_t)_{t\geq 0}$.
 - (b) Prove that the following process

$$X_t = e^{-\mu t} X_0 + \theta \{ 1 - e^{-\mu t} \} + e^{-\mu t} \int_0^t \sigma e^{\mu s} dW_s$$

is a solution of the following SDE

$$dX_t = -\mu(X_t - \theta)dt + \sigma dW_t$$

where X_0 is a real constant, and θ , μ and σ are constant parameters, and $(W_t)_{t\geq 0}$ is a Brownian motion.

[Hint: apply Itô's Lemma to $e^{\mu t}X_t$]

(c) Calculate $\mathbb{E}[X_t]$ and $\mathbb{V}ar[X_t]$.