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Useful formulae:

• The volume of a ball Bn = {(x1, x2, . . . , xn) | x2
1 + x2

2 + · · · + x2
n ≤ R2 } and the

surface area of a sphere Sn−1 = {(x1, x2, . . . , xn) | x2
1 + x2

2 + · · · + x2
n = R2 } of radius R

in n dimensions are:

Vol(Bn) =
πn/2

Γ(n/2 + 1)
Rn , Area(Sn−1) =

2πn/2

Γ(n/2)
Rn−1 .

• The one-dimensional Gaussian integral:∫ ∞
−∞

dx e−ax
2

=

√
π

a
.

• Stirling’s formula:
log n! ≈ n log n− n .

• Gamma function – definition and properties:

Γ(x) =

∫ ∞
0

e−t tx−1 dt Re(x) > 0 ,

Γ(x+ 1) = xΓ(x)

Γ (1/2) =
√
π

Γ(n+ 1) = n! (n ∈ N) .

• Dirac delta function:

δ(x) =

∫ ∞
−∞

dk

2π
ei k x .
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SECTION A

1. The energy fundamental relation expresses the internal energy E of a system in
terms of the other extensive quantities like the entropy S, the volume V and the
number of particles N . Consider a system whose energy fundamental relation is

E(S, V,N) = αSaV −bN c ,

for some positive constant α.

(a) Find the condition on the parameters {a, b, c} for which the above energy
fundamental relation is acceptable.

(b) Find the temperature T = T (S, V,N) and determine the condition on the
parameters {a, b, c} which ensures that the 3rd Law of Thermodynamics is
upheld.

(c) Write down the enthalpy H(S, p,N) of the system.

2. The internal energy of a fluid is a function E(S, V,N) of its entropy S, volume V
and number of particles N .

(a) Write down an expression for the differential dE according to the 1st Law of
Thermodynamics.

(b) Perform a double Legendre transform with respect to the pairs of conjugate
variables (S, T ) and (N,µ) to define the grand canonical potential Φ(T, V, µ),
and compute its differential dΦ.

(c) Express the entropy S, the pressure p and the number of particles N in terms
of the temperature T , the volume V and the chemical potential µ.

(d) Use the extensivity of the grand canonical potential to deduce that

Φ(T, V, µ) = −p(T, µ)V .

3. The probability density for the speed of non-interacting monatomic gas particles
moving in two spatial dimensions is given by the Rayleigh distribution:

p(v) =
1

N
v exp

(
− v2

2a2

)
, a2 = kBT/m . (1)

The speed v = |v| is the the modulus of the velocity vector v, and N is a normal-
ization constant.

(a) Determine N so that the probability distribution is correctly normalized.

(b) Compute the mean 〈v〉 and the variance σ2
v of this probability distribution.

(c) Compute the average energy of a gas particle. Is the result consistent with the
equipartition theorem?

(d) Find the probability density pE(E) for the energy of a gas particle.
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4. (a) Define the canonical partition function for a quantum system maintained at a
fixed temperature T . How is it related to the probability distribution for the
canonical ensemble?

(b) Consider a classical system of N identical non-interacting particles confined
in a volume V in three dimensions. Compute the canonical partition function
and calculate the mean energy 〈E〉, the free energy F and the entropy S of the
system in the limit where N is large.

5. (a) Define the density of states g(E) of a system. Write a formula for the exact
density of states g(E) of a quantum-mechanical system with energy eigenstates
|n〉 and energy eigenvalues En, and use it to express the canonical partition
function of the system as an integral over the energies.

(b) A quantum-mechanical rotor with moment of inertia I has a Hamiltonian Ĥ
with eigenvalues and eigenstates given by

Ĥ|j,mj〉 =
~2

2I
j(j + 1)|j,mj〉 ≡ Ej,mj

|j,mj〉

where j = 0, 1, 2, 3, . . . and mj = −j,−j + 1, . . . , j − 1, j. Write an exact
formula for its density of states g(E), and show that it is approximated by the
density of states

gc(E) =

{
0 , E < 0

2I/~2 , E > 0

for energies such that |E| � ~/
√
I.

6. Consider a quantum system of N non-interacting bosons, where each boson can
occupy one of the discrete one-particle states |r〉 of energy Er. The ground state |0〉
has zero energy E0 = 0.

(a) Write down the Bose-Einstein distribution for the average number of bosons
〈nr〉 that occupy state |r〉. For which range of the chemical potential µ and of
the fugacity z = eβµ is the formula sensible?

(b) Approximate the Bose-Einstein distribution for z � 1, which turns out to be
a high temperature limit, to derive the classical Maxwell-Boltzmann statistics.

(c) Analyse the expected number 〈n0〉 of bosons in the ground state in the limit
where z is very close to 1. Taking into account that the system consists of a
finite (though very large) number N of bosons, can z get arbitrarily close to
1? If not, estimate the maximum value of z that can be physically realised, as
a function of N � 1.
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SECTION B

7. Consider a gas with a fixed number of constituents N (that is omitted in the fol-
lowing).

(a) Starting from the exact differentials of the thermodynamic potentials E(S, V ),
F (T, V ), G(T, p) and H(S, p), derive the four Maxwell relations for the partial
derivatives of S, T , V and p.

(b) Derive the identities

∂S

∂T

∣∣∣∣
p

=
∂S

∂T

∣∣∣∣
V

+
∂S

∂V

∣∣∣∣
T

∂V

∂T

∣∣∣∣
p

,
∂S

∂p

∣∣∣∣
T

=
∂S

∂V

∣∣∣∣
T

∂V

∂p

∣∣∣∣
T

.

(c) Show that if three variables x, y and z satisfy a constraint f(x, y, z) = 0 for all
x, y and z, then

∂x

∂y

∣∣∣∣
z

∂y

∂z

∣∣∣∣
x

∂z

∂x

∣∣∣∣
y

= −1 .

(d) Express the heat capacities at constant volume CV and at constant pressure
Cp in terms of derivatives of the entropy for reversible processes. Show that:

Cp − CV = T
∂V

∂T

∣∣∣∣
p

∂p

∂T

∣∣∣∣
V

= −T ∂V
∂T

∣∣∣∣2
p

∂p

∂V

∣∣∣∣
T

,

∂E

∂V

∣∣∣∣
T

= T
∂p

∂T

∣∣∣∣
V

− p ,

∂CV
∂V

∣∣∣∣
T

= T
∂2p

∂T 2

∣∣∣∣
V

.
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8. An isolated system consists of a fixed number N of non-interacting quantum parti-
cles, which are located at different positions in space and are therefore distinguish-
able. Each particle can sit in either of two states: the ground state |0〉 or the excited
state |1〉, which have energies ε0 = 0 and ε1 = ε respectively.

(a) Which quantities specify a macrostate of the system? Express these quantities
in terms of ε and of the occupation numbers N0 and N1 which count how many
particles sit in the ground state and in the excited state respectively.

(b) Which quantities specify a microstate of the system? Relate the quantities
that specify a microstate to the quantities that specify the macrostate.

(c) Derive a general formula for the number of microstates that realizes a given
macrostate of the system, and write the discrete probability distribution for a
microstate in the appropriate statistical ensemble.

(d) Compute the entropy S(E,N) of the system and approximate it using Stirling’s
formula in the thermodynamic limit of large N and E. Rewrite the result in
terms of xi = Ni/N (i = 0, 1), the “filling fractions” for the two states.

(e) Compute the temperature T (E,N) as a function of the energy E and the
number of particles N . Invert the formula to express the energy E(T,N) in
terms of the temperature T and the number of particles N .

(f) Analyse the low temperature and the high temperature limits of the energy:
how are the two states occupied in these two limits?

9. Let us examine the thermodynamics of an anharmonic oscillator in one dimension.

(a) First consider a classical anharmonic oscillator whose Hamiltonian is

H(q, p) =
p2

2m
+ aq2 + bq4 ,

where a and b are positive numbers. Calculate the canonical partition function
and from it the heat capacity at constant volume for a system of N non-
interacting indistinguishable anharmonic oscillators. You should work in the
approximation where the anharmonicity is small, that is you can assume that
b/a2 � 1 and derive your results to leading order in this small parameter.

(b) Now consider the quantum version of the above. The energy spectrum of a
single oscillator is given to be

En =

(
n+

1

2

)
~ω + x

(
n+

1

2

)2

~ω , n = 0, 1, 2, . . .

Compute the grand canonical partition function of this system, correct to lead-
ing order in the small parameter x which now measures the anharmonicity. You
may use the formula

d2

dy2

1

2 sinh y
2

=
3 + cosh y

16 sinh3 y
2

.
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10. An ideal non-relativistic Fermi gas confined to a volume V is described by the grand
canonical partition function

Z ≡ e−βΦ =
∏
r

(1 + ze−βEr) , z = eβµ ,

where r labels the one-particle states (of energies Er) available to a single fermion
and µ is the chemical potential.

(a) Ignoring any internal degrees of freedom, such as spin, and assuming that the
energy levels are almost continuous, Er ≈ ~2k2/(2m), so that a sum over
one-particle states can be approximated by an integral∑

r

≈ V

(2π)3

∫
d3k ,

show that the mean particle number 〈N〉 of the system can be written as

〈N〉 = V λ3f3/2(z)

where λ is a constant that you should determine and

fν(z) =
1

Γ(ν)

∫ ∞
0

dx
xν−1

z−1ex + 1
.

(b) Show that the mean energy is similarly given by

〈E〉 =
3

2

V λ3

β
f5/2(z) .

(c) Using the following approximations, valid for large z,

f3/2(z) ≈ 4(ln z)3/2

3
√
π

(
1 +

π2

8(ln z)2

)
, f5/2(z) ≈ 8(ln z)5/2

15
√
π

(
1 +

5π2

8(ln z)2

)
,

show that at low temperatures

〈E〉
〈N〉

≈ 3

5
EF (1 +O(1/β2)) ,

where the Fermi energy EF is to be determined in terms of the average number
of particles 〈N〉 and the volume V .
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