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SECTION A

1. The density matrix ρ for a single qubit can be described in terms of the Bloch sphere
as

ρ =
1

2
(I + r · σ)

where the Bloch vector r is a position vector in three dimensions, I is the 2 × 2
identity matrix and

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

(a) For a constant λ ∈ C we define U ≡ exp(iλσ3). Show that

U = I cosλ+ iσ3 sinλ

and find the necessary condition on λ so that U is a unitary matrix.

(b) Under a time evolution ρ → ρ̃ = UρU † where U is the unitary matrix from
part (a). Calculate the Bloch vector r̃ of ρ̃ in terms of the initial Bloch vector
r and explain the geometric interpretation (in the Bloch sphere picture) of this
time-evolution, stating explicitly the dependence on λ.

2. (a) Find a unitary operator Û which acts as

Û (|n〉 ⊗ |0〉) = |n〉 ⊗ |n〉 , n ∈ {0, 1}

on the standard orthonormal basis states of a 2-qubit system.

You can write the operator in Dirac notation or using standard matrix notation.

(b) State the no-cloning theorem and explain clearly why, although the operator
Û in part (a) clones the states |n〉, this does not contradict the no-cloning
theorem.

(c) Give an example of a pure state which Û does not clone, and show explicitly
that it does not clone that state.
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3. In this question orthonormal basis states |0〉 and |1〉 of a single qubit Hilbert space

are represented by column vectors

(
1
0

)
and

(
0
1

)
respectively. Also, we inter-

changeably use notation |x〉 ⊗ |y〉 = |xy〉 etc.

Consider a system of 3 qubits. The first is held by Alice in the state

|ψ〉 = a |0〉+ b |1〉

for some a, b ∈ C. Alice also holds the second qubit which is entangled with the
third qubit which Bob holds. The second and third qubits are in the state

|β10〉 =
1√
2
|00〉 − 1√

2
|11〉 .

Any tensor products of two or all of the qubits are written in the order 1st, 2nd,
3rd left to right.

(a) Show that if Alice acts on her qubits with the (unitary) operator

|00〉 〈00|+ |01〉 〈01|+ |11〉 〈10|+ |10〉 〈11|

the state of the system becomes

a√
2
|000〉+

c√
2
|011〉+

d√
2
|110〉 − b√

2
|101〉

giving the explicit expressions for c and d in terms of a and b.

(b) Alice then acts on the first qubit with the (unitary) operator/matrix

1√
2

(
1 1
1 −1

)
before measuring each of her qubits using the observable

σ3 =

(
1 0
0 −1

)
.

What is the state of the qubit held by Bob if the results of Alice’s measurements
were (1,−1), i.e. 1 for the first qubit and −1 for the second?

(c) Alice can tell Bob the result of her two measurements using classical com-
munication. Once Bob knows that Alice’s measurement results were (1,−1),
which unitary operator can Bob use to transform his state to the state |ψ〉 even
though neither Alice nor Bob know the values of a and b?
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4. Give a universal gate set for reversible classical computation. Using this gate set,
draw circuit diagrams corresponding to

(a) A function of two bits such that f(01) = 1 and f(x) = 0 otherwise.

(b) A function of three bits such that f(011) = 1 and f(x) = 0 otherwise.

5. Consider the state |ψ〉 = 1√
2
(|x0〉− |x0⊕ a〉) in an n-qubit system, where ⊕ denotes

bitwise addition.

(a) Calculate H⊗n|ψ〉, where H is the Hadamard operator.

(b) Suppose we would like to learn the value a, and x0 is a random value of no
interest to us. Explain what information a measurement in the computational
basis on the state H⊗n|ψ〉 gives us about a. How many such measurements are
typically required to determine a?

6. Given a unitary operator Uf representing a function f(x) with f(a) = 1 and f(x) =
0 for x 6= a, construct an operation which will reflect a state |ψ〉 in the plane
orthogonal to |a〉 (that is, which keeps the component of |ψ〉 orthogonal to |a〉
unchanged, and reverses the sign of the component along |a〉).
Explain how this operation is used in Grover’s algorithm to find the value of a.
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SECTION B

7. The four Bell states are

βxy =
1√
2

(|0〉 ⊗ |y〉+ (−1)x |1〉 ⊗ |y〉)

where x, y ∈ {0, 1}, 0 ≡ 1 and 1 ≡ 0. In this question you may assume without
proof that the four Bell states are orthonormal and that any two Bell states are
related by a unitary transformation of the form Û ⊗ Î.

In this question Alice wants to send a message with absolute security to Bob. They
can communicate classically but suspect that Eve can listen in on such communica-
tions.

(a) Alice and Bob each have one qubit of a known Bell state. Explain in detail
how Alice can send a single message “yes” or “no” to Bob using LOCC only,
in such a way that Eve cannot learn which message is sent.

(b) Again Alice and Bob each have one qubit of a known Bell state. If Alice is
allowed to send one qubit to Bob, explain how she can transmit two bits of
information to Bob without using any classical communication.

(c) If Eve is able to intercept any qubits sent to Bob, explain why she cannot learn
anything about Alice’s message in part (b).

(d) Eve decides to simply block any qubits sent to Bob. Alice and Bob can com-
municate but assume Eve can listen in on their communications so cannot risk
sending any sensitive information via classical communication. Unfortunately
Alice still needs to send two bits of information to Bob but they no longer
share any entangled states. Fortunately they both share some Bell states with
Charlie whom they trust (so they don’t mind if Charlie discovers the message).
Using the above results, describe how Charlie can help Alice transmit her two
bits of information to Bob using the least number of Bell pairs, without Charlie
sending any qubits to Alice.
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8. (a) Consider a bipartite system with an orthonormal basis {|αn〉} for HA, the
Hilbert space of system A, and similarly {|βi〉} forHB. Here n ∈ {1, 2, . . . , dimHA}
and i ∈ {1, 2, . . . , dimHB}.
Give an orthonormal basis for H = HA ⊗HB, give an expression for a general
pure state |Ψ〉 ∈ H and show that |Ψ〉 can always be written in the form

|Ψ〉 =
∑

n

|αn〉 ⊗ |φn〉 .

(b) Let M̂ be an observable in system A with eigenstates |αn〉 and a non-degenerate
spectrum. Measuring M in system A can also be viewed as a measurement in
the full bipartite system. State what observable (operator) this corresponds to
in the bipartite system. Show that after such a measurement the state of the
full system will be separable, no matter what the initial pure state |Ψ〉 is.

(c) Now consider the case where dimHA = 3 but the spectrum of M̂ has degen-
eracy. Specifically |α1〉 and |α3〉 have eigenvalue λ1 while |α2〉 has eigenvalue
λ2 6= λ1.

Suppose also that

|φ1〉 =
1

2
|1〉 , |φ2〉 =

√
3

4
(|1〉+ |2〉) , |φ3〉 =

√
3

4
(|1〉 − |3〉)

where the three states |n〉 are orthonormal.

i. What are the possible outcomes and final states in the full system if M is
measured in system A?

ii. Calculate Tr(ρ̂2
A) (for each possible outcome) after the measurement of M ,

where ρ̂A is the reduced density operator in system A.

iii. Without explicit calculation, what can you say about the value of Tr(ρ̂2
A)

before the measurement in comparison to the value of this quantity after
the measurement?
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9. Consider

U =


1 0 0 0
0 0 1 0
0 1√

2
0 − 1√

2

0 1√
2

0 1√
2


(a) Write this as the product of unitaries Ui which each act non-trivially on a

two-dimensional subspace of the Hilbert space.

(b) Write the operators Ui which do not act on a subspace corresponding to a
single qubit as products of ones that do.

(c) Draw a quantum circuit corresponding to U , using only NOT, H, Z and CNOT,
controlled-H and controlled-Z.

(d) For an n-qubit system, how many operators Ui which each act non-trivially on
a two-dimensional subspace are required to realise a general unitary U? What
does this tell us about the complexity of a general unitary U?

10. We want to construct a 5 qubit code allowing for recovery from arbitrary single
qubit errors.

(a) Consider the operators in a 5 qubit Hilbert space

M0 = Z1X2X3Z4, M1 = Z2X3X4Z0, M2 = Z3X4X0Z1,

M3 = Z4X0X1Z2, M4 = Z0X1X2Z3.

Show that

|0̄〉 =
1

4
(I +M0)(I +M1)(I +M2)(I +M3)|00000〉,

|1̄〉 =
1

4
(I +M0)(I +M1)(I +M2)(I +M3)|11111〉

are eigenstates of all the Mi for i = 0, . . . , 3 with eigenvalue +1.

(b) Find the eigenvalues for the subspaces obtained after the single qubit errors
X0, Y0 or Z0.

(c) Show that |0̄〉, |1̄〉 form a code subspace for arbitrary single qubit errors, and
that Mi i = 0, . . . 3 are suitable error syndromes.

(d) Define a fault tolerant operation on the logical qubit. Show that X̄ = X0X1X2X3X4

realizes Pauli X on the logical qubit. Is it fault tolerant?
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