

EXAMINATION PAPER

Examination Session: May

2019

Year:

Exam Code:

MATH3401-WE01

Title:

Cryptography and Codes

Time Allowed:	3 hours				
Additional Material provided:	None				
Materials Permitted:	None				
Calculators Permitted:	Yes	Models Permitted: Casio fx-83 GTPLUS or Casio fx-85 GTPLUS.			
Visiting Students may use dictionaries: No					

Instructions to Candidates: Credit will be given for: the best FOUR answers from Section A and the best THREE answers from Section B. Questions in Section B carry TWICE as many marks as those in Section A.

Revision:

Page number					
2 of 5					

SECTION A

1. We use the following convention to convert alphabetic messages into integers modulo 26:

А	В	\mathbf{C}	D	Ε	\mathbf{F}	G	Η	Ι	J	Κ	L	Μ
1	2	3	4	5	6	$\overline{7}$	8	9	10	11	12	13
Ν	Ο	Р	Q	R	S	Т	U	V	W	Х	Y	Ζ
14	15	16	17	18	19	20	21	22	23	24	25	26

(a) Alice encrypts the plaintext "PLAY" using a Hill cipher with block length two and key matrix

(5)	7	
$\backslash 2$	17)	•

Find the ciphertext (in alphabetic form).

- (b) Using a Hill cipher with block length two and a different key matrix M, Alice encrypts the plaintext "MILK" and obtains the ciphertext "EFFI". Find the key matrix M.
- 2. Alice and Bob are using the Diffie–Hellman key exchange scheme. They choose the prime p = 89 and the primitive root $g = 7 \mod p$. Alice's private key is α and her public key is 54. Bob's private key is β and his public key is 11.
 - (a) Using the baby-step giant-step algorithm, or otherwise, find α .
 - (b) Show that Alice and Bob's shared secret key is 57.
- 3. Let E be the elliptic curve defined by $y^2 = x^3 + 2x + 1$ over \mathbb{Q} . Let P = (0, 1), a point on E.
 - (a) Show that [2]P = (1, -2).
 - (b) Find [3]P.
 - (c) Using the Nagell–Lutz theorem, show that P is not a torsion point.
 - (d) Deduce that $E(\mathbb{Q})$ is infinite.

4. The code C is the image of the map $f_A : \mathbb{F}_5^4 \longrightarrow \mathbb{F}_5^5$, so $C = \{xA \mid x \in \mathbb{F}_5^4\}$, where

Exam code

MATH3401-WE01

$$A = \begin{pmatrix} 1 & 0 & 2 & 1 & 1 \\ 1 & 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 & 1 \\ 4 & 0 & 3 & 3 & 2 \end{pmatrix}.$$

- (a) Find a generator-matrix G for C, and show that $k = \dim(C) = 3$.
- (b) Find a check-matrix H for C, and find d = d(C).
- (c) Find parameters $[n_2, k_2, d_2]$ for C^{\perp} , the dual of C.
- (d) Use your matrix G to
 - i. encode the message (4,2,0).
 - ii. channel-decode the codeword (1,3,1,1,4).
- 5. Let C be an [n, k, d] code with check-matrix H.
 - (a) In lectures we proved that there exists a codeword $c \in C$ with $0 < w(c) \leq m$ if and only if H has m linearly dependent columns. Prove **one** direction of this result, either \Rightarrow or \Leftarrow .

For linear codes, the Singleton Bound says that $d \leq n - k + 1$. Prove this in three different ways:

- (b) by considering a map $f: \mathbb{F}_q^n \longrightarrow \mathbb{F}_q^{n-(d-1)}$.
- (c) by considering the check-matrix H.
- (d) by considering a generator-matrix G in RREF (row-reduced echelon form).

6. Let
$$C \subseteq \mathbb{F}_2^5$$
 have check-matrix $H = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$.

- (a) Make a syndrome look-up table for this code, and use it to decode the received words $\mathbf{y}_1 = (1, 0, 1, 1, 0) \ \mathbf{y}_2 = (1, 1, 0, 1, 1)$, and $\mathbf{y}_3 = (0, 1, 0, 1, 0,)$.
- (b) Which of these \mathbf{y}_i has two nearest neighbours in C? Confirm your answer by listing the codewords in C.
- (c) The code is now sent over a binary symmetric channel with symbol-error probability p. Using your table, what is the probability that you will decode a received word correctly (that is, find the codeword that was sent)?
- (d) Let \widehat{C} be the extended code of C. Write down a check-matrix \widehat{H} and a generator-matrix \widehat{G} for \widehat{C} .
- (e) If we extend a binary code repeatedly, $C, \hat{C}, \hat{C} \dots$, what happens to the minimum distance? Explain.

SECTION B

- 7. Alice and Bob are exchanging messages using the RSA encryption scheme. Alice's public key is (N, e) where N is the public modulus, a product of two primes p and q, and e is the encryption exponent.
 - (a) Bob wants to send the message m to Alice, where m is an integer modulo N. Explain how he encrypts m as an integer c modulo N.

To obtain m from c, Alice uses the equation

$$m \equiv c^d \mod N$$

where d is the decryption exponent. Explain how Alice finds d. Your answer should point out where Alice uses information that is known only to her.

- (b) Suppose that Alice's public key is (N, e) = (58033, 10007), and that the decryption exponent is d = 53343. Using this information, factorise N. You may use the congruence 5⁶⁶⁷²⁵⁴²⁴ ≡ 13467 mod N.
- (c) Suppose now that Alice uses a different public key (N, e) and that e = 3. Show that

$$d = \frac{2\phi(N) + 1}{3}.$$

If, moreover, p < q < 2p, show that

$$\left| d - \frac{2N+1}{3} \right| < 2\sqrt{N}.$$

- 8. (a) Let p = 53 and let E be the elliptic curve $y^2 = x^3 + 3x + 32$ over \mathbb{F}_p . Let P = (1, 6), which is a point of $E(\mathbb{F}_p)$. Given that [3]P = (24, 28) and [32]P = (9, 24), show that P has order 67.
 - (b) Stating any theorems you use, show that $|E(\mathbb{F}_p)| < 70$. Deduce that $E(\mathbb{F}_p)$ is cyclic of order 67.
 - (c) Alice is signing messages using the elliptic curve Elgamal signature scheme. Her public elliptic curve is the elliptic curve E above, and her public generator is the point P of order n = 67. Her secret key is an integer $1 \le \alpha \le n - 1$ and her public key is $Q = [\alpha]P = (43, 3)$.

In this scheme, a valid signature on the message m is a pair (R, s) where $R = (x_R, y_R)$ is a point on $E(\mathbb{F}_p)$ with $0 \le x_R \le n - 1$, s is an integer with $0 \le s \le n - 1$, and the equation

$$[x_R]Q \oplus [s]R = [m]P$$

holds.

Given that:

- ((2, 29), 38) is a valid signature on the message m = 2; and
- ((2, 29), 42) is a valid signature on the message m = 3,

find α .

- 9. Let p be a prime.
 - (a) Show that in $\mathbb{F}_p[x]$ we have $x^p 1 = (x 1)^p$.
 - (b) Determine how many cyclic codes there are in $\mathbf{R}_p = \mathbb{F}_p[x]/(x^p 1)$.
 - (c) Consider the nontrivial cyclic codes in $\mathbf{R}_5 = \mathbb{F}_5[x]/(x^5-1)$. (Nontrivial means that $1 < |C_i| < 5^5$.) For each code give the generator-polynomial $g_i(x)$ and a generator-matrix G_i .
 - (d) Give the check-polynomial $h_i(x)$ and a check-matrix H_i for each code.
 - (e) Show that these codes are dual in pairs.
 - (f) Show in general that, if $p \ge 3$, then the cyclic codes in \mathbf{R}_p are dual in pairs. (*Hint:* Pascal's triangle)
- 10. The Reed-Solomon code $\operatorname{RS}_k(\mathbf{a}, \mathbf{b})$ is the image of the linear map $\varphi_{\mathbf{a},\mathbf{b}} : \mathbb{F}_q[x]_{\leq k} \longrightarrow \mathbb{F}_q^n$, where $\varphi_{\mathbf{a},\mathbf{b}}(f(x)) = (b_1 f(a_1), \ldots, b_n f(a_n))$.
 - (a) Explain briefly why a generator-matrix for $RS_k(\mathbf{a}, \mathbf{b})$ is given by

$$G = \begin{pmatrix} - & \varphi_{\mathbf{a},\mathbf{b}} \left(1\right) & - \\ - & \varphi_{\mathbf{a},\mathbf{b}} \left(x\right) & - \\ & \vdots & \\ - & \varphi_{\mathbf{a},\mathbf{b}} \left(x^{k-1}\right) & - \end{pmatrix}.$$

(b) By finding suitable vectors **a** and **b**, show that the code in \mathbb{F}_7^6 with generator matrix

$$G_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 6 & 0 & 4 & 4 \end{pmatrix}$$

is a Reed-Solomon code $RS_2(\mathbf{a}, \mathbf{b})$. Write down the generator matrix G_3 for $RS_3(\mathbf{a}, \mathbf{b})$.

- (c) By considering the weights of codewords, show that any $RS_k(\mathbf{a}, \mathbf{b})$ has d = n k + 1. Because of this we say that $RS_k(\mathbf{a}, \mathbf{b})$ is maximum distance separable, or MDS.
- (d) What does it mean for a code to be *perfect*? Show that an [11, 6, 5] code over \mathbb{F}_3 is perfect.

It was stated in lectures that for $n \leq 1000$, $d \leq 1000$ and $q \leq 100$ the only possible parameters for a (nontrivial, linear) perfect code are:

- the parameters of the odd binary repetition codes
- the parameters of the Hamming codes
- [23, 12, 7] or [90, 78, 5] over \mathbb{F}_2 , or [11, 6, 5] over \mathbb{F}_3 .
- (e) Can any codes with these parameters also be MDS? Give the parameters for these perfect MDS codes, in terms of n or q as appropriate.
- (f) Can a Reed-Solomon code be perfect?