

EXAMINATION PAPER

Examination Session: May

2019

Year:

Exam Code:

MATH4051-WE01

Title:

General Relativity IV

Time Allowed:	3 hours							
Additional Material provided:	None							
Materials Permitted:	None							
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.						
Visiting Students may use dictionaries: No								

Instructions to Candidates:	Credit will be given for: the best FOUR answers from Section and the best THREE answers from S Questions in Section B carry TWICE in Section A.	Section B.	arks as those
-----------------------------	--	------------	---------------

Revision:

SECTION A

1. A two-dimensional space-time has coordinates $x^{\mu} = (t, x)$ and metric

$$ds^2 = \mathrm{e}^{2t}(dt^2 - dx^2).$$

Different coordinates $\tilde{x}^{\mu} = (p, q)$ are defined by $p = \exp(t + x)$ and $q = \exp(t - x)$.

- (a) If a vector field V has components $V^{\mu} = (1, 1)$ with respect to the original coordinates, what are its components \widetilde{V}^{μ} with respect to the new coordinates \tilde{x}^{μ} ?
- (b) Compute the components $\tilde{g}_{\mu\nu}$ of the metric with respect to the new coordinates.
- 2. A four-dimensional space-time is equipped with the metric

$$ds^{2} = 2 dt dx - x^{2} (dx^{2} + dy^{2} + dz^{2})$$
 for $x > 0$.

- (a) Given a covector field $W_{\mu} = (1, 1, 1, 1)$, compute the scalar field $f = W_{\mu}W^{\mu}$.
- (b) Compute the proper length D of the curve defined by $t(s) = s^3$, x(s) = y(s) = s, z(s) = 0 for $1 \le s \le 2$.
- 3. (a) Give the definitions of the Lie derivative $\mathcal{L}_V f$ of a scalar field f, and the Lie derivative $(\mathcal{L}_V U)^{\mu}$ of a vector field U^{μ} .
 - (b) Given that \mathcal{L}_V satisfies the Leibniz rule, derive an expression for the Lie derivative $(\mathcal{L}_V W)_{\mu}$ of a covector field W_{μ} .
- 4. In this problem we work in two-dimensional Minkowski space-time, in Cartesian coordinates, with metric $ds^2 = dt^2 dx^2$. Consider two twins, Twin A and Twin B. At t = 0, both twins are the same age. They now follow two different trajectories through space-time. Twin A follows $t(s_A) = s_A$, $x(s_A) = 0$, while Twin B follows $t(s_B) = s_B$, $x(s_B) = \sin(s_B)$, where s_A and s_B are parameters along the two paths.
 - (a) At what coordinate time t_1 do the two twins meet again for the first time?
 - (b) Compute the proper time elapsed along each of the two trajectories from t = 0 to $t = t_1$.
 - (c) Which of the two trajectories that twins A and B follow is a geodesic? When the two twins meet again at $t = t_1$, which twin is older?

Exam code	٦
MATH4051-WE01	1
	i
L	┛

- 5. (a) State the condition for a covector field v_{μ} to be a Killing covector field.
 - (b) Consider flat two-dimensional space in polar coordinates: $ds^2 = dr^2 + r^2 d\theta^2$. How many (linearly independent) Killing covector fields does this space have?
 - (c) Write down these Killing covector fields in polar coordinates.
- 6. Consider the space-time with metric

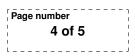
$$ds^{2} = \frac{1}{\cos^{2}(\sigma)} \left(dt^{2} - d\sigma^{2} \right),$$

where the spatial coordinate is $\sigma \in (-\pi/2, \pi/2)$.

- (a) Show that the proper distance between the two ends of the space-time at $\sigma = -\pi/2$ and $\sigma = \pi/2$ is infinite, but that a light ray can travel from one end to the other in finite coordinate time t.
- (b) A stationary observer at $\sigma = \sigma_0$ emits a photon of frequency ω_0 , which is then observed by a stationary observer at $\sigma = \sigma_1$. Derive a formula for the frequency ω_1 observed at $\sigma = \sigma_1$.

SECTION B

- 7. A two-dimensional space has coordinates (r, θ) where r > 0, and θ is periodic with period 2π . Its metric is $ds^2 = dr^2 + u(r) d\theta^2$, where u(r) is a positive function.
 - (a) Compute the Christoffel symbols $\Gamma^{\mu}_{\alpha\beta}$.
 - (b) Consider the parallel propagation of a vector V^{μ} around a closed loop $r = r_0$ constant. We want V^{μ} to return to its original value after travelling from $\theta = 0$ to $\theta = 2\pi$. What is the most general function u(r) for which this holds, over all loops r = constant, subject only to the condition that u(0) = 0?
 - (c) Find the geodesics of the metric $ds^2 = dr^2 + r d\theta^2$ which are given by even functions $r = r(\theta)$. [You might find the following integral useful: $\int dx/\sqrt{x^2 a^2} = \cosh^{-1}(x/a)$.]



- 8. (a) The antisymmetric tensor field $F_{\mu\nu}$ satisfies Maxwell's equations $\nabla^{\mu}F_{\mu\nu} = 0$ and $\nabla_{[\alpha}F_{\mu\nu]} = 0$. Show that $T_{\mu\nu} = F_{\mu}{}^{\alpha}F_{\nu\alpha} + mF_{\alpha\beta}F^{\alpha\beta}g_{\mu\nu}$ satisfies $\nabla^{\mu}T_{\mu\nu} = 0$, for some constant *m* which you should determine.
 - (b) A two-dimensional space with coordinates $(x^1, x^2) = (p, \theta)$ has the metric $ds^2 = dp^2 + \sinh^2(p) d\theta^2$ with p > 0. Show that $V^{\mu} = (\cos \theta, k \coth(p) \sin \theta)$ is a Killing vector field, for some value of the constant k which you should determine. You may use the fact that if $f = V_{\mu} \dot{x}^{\mu}$ is constant along arbitrary affinely-parametrized geodesics $x^{\mu} = x^{\mu}(s)$, then V_{μ} satisfies the Killing equation (here $\dot{x}^{\mu} = dx^{\mu}/ds$ as usual).
 - (c) Given that the tensor field $P_{\mu\nu}$ satisfies $\nabla^{\mu}P_{\mu\nu} = 0$, find constants A and B such that

$$\nabla^{\mu}\nabla_{\nu}P_{\mu\alpha} = AR_{\nu\beta}P^{\beta}{}_{\alpha} + BR_{\mu\nu\alpha\beta}P^{\mu\beta}.$$

9. Consider the space-time with metric

$$ds^{2} = (1 + Br^{2})^{2}(dt^{2} - dr^{2} - dz^{2}) - \frac{r^{2}}{(1 + Br^{2})^{2}} d\phi^{2},$$

where B > 0 is a constant. As usual ϕ is a periodic coordinate with period 2π , and $r \ge 0$ is a radial coordinate.

- (a) Identify the coordinate and curvature singularities of this space-time, if any.
- (b) The space-time has Killing vector fields associated with translations in each of the t, ϕ , and z directions: write down these Killing vector fields.
- (c) Use the Killing vectors to write down the massive geodesic equation in the form

$$\frac{1}{2}\left(\frac{dr}{ds}\right)^2 + V(r) = 0,$$

where s is an affine parameter along the trajectory, and V(r) can be written in terms of the constants of the motion.

- (d) Is it possible for a particle obeying the geodesic equation to move in only the z (and t) directions? If so, find the radial position of the particle $r = r^*$ in terms of the parameters appearing in V(r).
- (e) Consider a particle obeying the geodesic equation and moving only in r (and t), with no motion in the ϕ or z directions. If it is displaced slightly away from r = 0, it will exhibit oscillations around r = 0. Assuming these oscillations to have a small amplitude, compute their frequency (as measured with respect to s).

Page number															
L						5		-	F	5					
L	5 of 5														
Ľ															
L	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

10. Here we will study cosmology in d space-time dimensions, with coordinates $x^{\mu} = (t, x^i), i \in \{1, 2, \dots d-1\}$. Consider the analogue of the FRW metric in d space-time dimensions with no spatial curvature, namely

$$ds^{2} = dt^{2} - a(t)^{2} \left(dx_{1}^{2} + dx_{2}^{2} + \dots + dx_{d-1}^{2} \right)$$

Exam code

MATH4051-WE01

The components of the Ricci tensor for this metric are

$$R_{tt} = -(d-1)\frac{\ddot{a}}{a}, \qquad R_{ij} = (\ddot{a}a + (d-2)\dot{a}^2)\delta_{ij},$$

with all other components zero. As usual, we will assume the matter stress tensor is given by

$$T^{\mu\nu} = (\rho + p)U^{\mu}U^{\nu} - pg^{\mu\nu}, \qquad U^{\mu} = \delta^{\mu}_t,$$

where ρ and p are the energy-density and pressure. They are related by an equation of state $p = w\rho$, with w a dimensionless constant.

(a) From the usual Einstein equations, show that the scale factor satisfies the *d*-dimensional analogue of the FRW equations, namely

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{16\pi G}{(d-2)(d-1)}\rho, \qquad \frac{\ddot{a}}{a} = -\frac{8\pi G}{d-2}\left(p + \frac{d-3}{d-1}\rho\right).$$

(b) From these equations, obtain an expression for $\dot{\rho}$ of the form

$$\dot{\rho} + \alpha \frac{\dot{a}}{a}(\rho + p) = 0,$$

where α is a constant that depends on d in a manner that you should determine.

- (c) For arbitrary d, determine the form of $\rho(a)$ for matter domination (w = 0) and radiation domination (w = 1/(d-1)).
- (d) Solve the FRW equations to find the time-dependence of a, for arbitrary d, for each of the two cases of matter and radiation domination.