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SECTION A

1. The action for two real scalar fields ϕ1(x) and ϕ2(x) is given by

S =

∫
d4x

{
− 1

2
m2ϕ1(x)2 − 1

2
m2ϕ2(x)2 − 1

2
∂µϕ1(x)∂µϕ1(x)− 1

2
∂µϕ2(x)∂µϕ2(x)

+ λ

(
ϕ1(x)∂µϕ1(x) + ϕ2(x)∂µϕ2(x)

)(
ϕ1(x)∂µϕ1(x) + ϕ2(x)∂µϕ2(x)

)}
. (1)

(a) Write the equations of motion for the fields ϕ1(x) and ϕ2(x).

(b) Show explicitly that the action S is invariant under the transformation of the
fields

ϕ1 → cosαϕ1 + sinαϕ2 ,

ϕ2 → − sinαϕ1 + cosαϕ2 ,

where α = const, and derive the Noether current(s) associated with this sym-
metry.

Hint: In this whole question, it is convenient to first rewrite the action in the form
which is manifestly invariant under the given symmetries.

2. (a) Write the general statement of Wick’s theorem. Please explain the meaning
of each symbol which you use, and in particular give the definition of time
ordering and normal ordering of two operators.

Apply Wick’s theorem to the following expression

〈0|T
(
φ̂1(x1)φ̂1(x2)φ̂2(x3)φ̂2(x4)

)
|0〉 ,

where φ̂1 and φ̂2 are two independent fields.

(b) Starting with the expression for φ̂i(x) (with i = 1, 2) in terms of positive and
negative frequency parts φ̂i,± derive the expression which you have written in
the previous part. As in the lectures, when doing this you may assume without
proof that the commutators which you get give propagators.
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3. Figures A and B below show two Feynman graphs which originate from two different
theories.

Based on your general knowledge about Feynman graphs answer the following ques-
tions:

(a) At which order in perturbation theory do these graphs appear for the first
time?

(b) What are the symmetry factors of these graphs?

(c) Write the interaction terms in the Langrangians for the two theories from which
these graphs originate. Use standard normalisation for the interactions.

(d) Assume that there are two different theories, such that the only interaction
vertex appearing in the first theory is the one in graph A), and the only inter-
action vertex appearing in the second theory is the one in graph B). For each
theory, state whether it is possible for a single incoming particle of one type
(species) to change to a single particle of another type (species), if you are
considering processes up to and including second order in perturbation theory.

In each case where your answer is yes, justify this by drawing at least one graph
which contributes to this process.
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4. Consider a relativistic particle whose spacetime coordinates are given in terms of a
parameter τ as Xµ(τ) . The action describing the particle’s motion is

S[Xµ(τ)] =
1

2

∫
dτ
(
ẊµẊµ −m2 + iε

)
(a) Derive the equation of motion of the particle from this action and describe it

physically.

(b) Define the amplitude for a particle which is initially at space-time point XI to
be found at XF to be

G(Xµ
F ;Xµ

I ) =

∫ ∞
0

dT

∫
DXµ(τ) exp

(
i

~
S[Xµ(τ)]

)
where the path integral is over all paths Xµ(τ) with Xµ(0) = Xµ

I and Xµ(T ) =
Xµ
F . Explain carefully how this can be approximated as

G(Xµ
F ;Xµ

I ) ≈ lim
N→∞

∫ ∞
0

dTC(N,∆)

∫
d4X1 . . .

∫
d4XN−1

× exp
i

2~

N∑
k=1

(
1

∆
(Xk−Xk−1)

µ(Xk−Xk−1)µ −∆(m2−iε)
)
.

You should define ∆ but need not define C(N,∆) here.

(c) Thus obtain the Fourier transform of this amplitude

G(PF ;PI) :=

∫
d4XFd

4XI G(XF ;XI) exp
i

~
(PI .Xi + PF .XF ) ,

defining C(N,∆) in such a way as to ensure a finite result. What is this
amplitude called in quantum field theory?

Hint: You may use that
∫

exp(−ia(x− y)2)dx =
√
π/ia in your derivation.
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5. Consider the generating functional

Z[J ] =

∫
Dφ exp

(
i

~
S[φ] +

∫
d4xJ(x)φ(x)

)
for a free scalar field theory, with action

S[φ] =
1

2

∫
d4xφ (�−m2)φ .

(a) Rewrite Z[J ] in terms of φ̃ = φ−
∫
d4yG(x− y)J(y) in order to complete the

square in the exponent. What equation must G(x− y) satisfy?

(b) Compute the correlation function

〈φ(x1)φ(x2)〉 =
1

Z[0]

δ

δJ(x1)

δ

δJ(x2)
Z[J ]|J=0

from Z[J ] in terms of G(x− y).

(c) Compute

1

Z[0]

1

3!

iλ

~

∫
d4y

δ3

δJ(y)3

δ

δJ(x1)

δ

δJ(x2)

δ

δJ(x3)
Z[J ]|J=0

from Z[J ] (leaving your answer in terms of a single space-time integral involving
G(x− y)). Draw the corresponding Feynman diagram.

6. The Virasoro generators for the quantum closed relativistic string are given by

L̂m =
1

2

(
∞∑

n=−∞

: α̂µm−nα̂
ν
n : ηµν

)
− aδm,0 ,

with a similar expression for ˆ̃Lm. Here α̂µ0 = ˆ̃αµ0 =
√
α′/2 p̂µ.

(a) Write down the constraints involving L̂m and ˆ̃Lm and explain their origin in
words.

(b) Use the above constraints to show that the mass-squared operator is given in
terms of the number operators,

N̂ :=
∑
n≥1

α̂µ−nα̂
ν
nηµν

(and similarly for Ñ) by

M2 =
2

α′

(
N̂ + ˆ̃N − 2a

)
.

Also show that there is a constraint

0 = N̂ − ˆ̃N .

(c) What is the mass of the vacuum and the first excited state (use lightcone
gauge)? How can this fix the value of a?
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SECTION B

7. An action for two free, real scalar fields ϕ1(x) and ϕ2(x) is given by

S =

∫
d4x

(
− 1

2
m2ϕ2

1(x)− 1

2
∂µϕ1(x)∂µϕ1(x)− 1

2
m2ϕ2

2(x)− 1

2
∂µϕ2(x)∂µϕ2(x)

)
(2)

µ = 0, 1, 2, 3 and this action is invariant under “rotations”

ϕ1 → cosαϕ1 + sinαϕ2 ,

ϕ2 → − sinαϕ1 + cosαϕ2 ,

where α = const.

(a) Write down the classical charge Q associated with this symmetry, as well as
the quantum version of this charge.

(b) Work out the normal ordered expression for the quantum charge Q̂ found in
the previous part.

(c) The normal ordered quantum Hamiltonian Ĥ for the action (2) is given by

Ĥ =

∫
d3p

(2π)3
ωp

(
â†pâp + b̂†pb̂p

)
ωp =

√
p2 +m2

where â†p, âp, b̂
†
p, b̂p are creation and annihilation operators for the fields ϕ1

and ϕ2. Using this expression, compute explicitly the commutator [Ĥ, Q̂].
Explain what is the physical meaning of your result.

(d) The quantum momentum operator for the system, in normal-ordered form, is
given by

P̂i =

∫
d3p

(2π)3
pi

(
â†pâp + b̂†pb̂p

)
.

What is the value of the commutator [P̂i, Q̂]? You do not need to do this
computation explicitly. Can you explain this result?
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8. The action for two real scalar fields ϕ1(x), ϕ2(x) is given by

S = −
∫

d4x

{
1

2

(
2∑
i=1

∂µϕi(x)∂µϕi(x) +
2∑
i=1

m2
iϕi(x)2

)
+ λϕ1(x)ϕ2(x) +

λ

2
ϕ1(x)2

}
(3)

where λ is a real number, a coupling constant.

(a) Write down the Feynman rules for this theory in position and momentum space.
Write the integral expression for the Feynman propagators.

(b) List all the vacuum bubbles which appear in this theory up to and including
order λ2. You should draw all the graphs and write the expressions for these
graphs in position space. You do not need to evaluate any of the graphs.

(c) Write the general expression for the Dyson formula for two fields, explain why
this formula is very important and what are the limitations of this formula in
general. Please explain all the symbols which appear in the formula, and be
very precise about the difference between operators and bras and kets on the
left- and right-hand side of the formula.

(d) Evaluate the two-point correlators

〈Ω|T{ϕ1(x)ϕ2(y)}|Ω〉 and 〈Ω|T{ϕ1(x)ϕ1(y)}|Ω〉 ,

up to and including second order in perturbation theory. Start by writing
the Dyson formula for two fields and show explicitly that all bubble diagrams
cancel out.
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9. Consider a 0-dimensional “field theory” with action

Sλ = −m
2

2
φ2 − λ

4!
φ4 .

(a) What does the expression

Iλ =

∫ ∞
−∞

φ2 e
i
~Sλ dφ∫ ∞

−∞
e
i
~S0dφ

represent physically?

(b) The Fresnel integral is given as∫
e−iaφ

2

dφ =

√
π

ia

(which you can assume without proof).

Use this to compute I0. What does this represent physically?

(c) Similarly compute the order λ term to the series expansion of Iλ.

(d) Compute the O(λk) term to the series expansion of Iλ for arbitrary k.

(e) Show that the O(λk) term diverges for large k. Why is perturbation theory
still useful?

Hint: You may assume Stirling’s formula: k! ∼ kk as k →∞.
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10. Consider the closed string action,

S =

∫
dτ

∫ 2π

0

dσ
√
−hhαβ∂αXµ∂βXµ .

(a) Derive the equations of motion and the constraints from the above Lagrangian.

Hint: You may use without proof that ∂
∂hαβ

√
−h = −1

2
hαβ
√
−h.

(b) In the flat gauge in world-sheet light-cone coordinates, σ± = τ ± σ, the world-
sheet metric takes the form

h =

(
0 1
1 0

)
.

Derive the equations of motion and constraints in this gauge.

(c) The generic solution to the equation of motion is given by X(σ, τ) = XL(σ+)+
XR(σ−) where

Xµ
R =

1

2
xµ +

1

2
α′pµσ− + i

√
α′

2

∑
n6=0

αµn
1

n
e−inσ

−

Xµ
L =

1

2
xµ +

1

2
α′pµσ+ + i

√
α′

2

∑
n6=0

α̃µn
1

n
e−inσ

+

.

Show that this solution satisfies the equation of motion and the periodicity
condition Xµ(σ, τ) = Xµ(σ + 2π, τ).

(d) Show that the flat world-sheet metric is invariant under a generic transforma-
tion

σ+ = f+(σ̃+) , σ− = f−(σ̃−) ,

(where f± are two arbitrary functions) combined with a scale transformation.

(e) Consider the solution where all coefficients xµ, pµ, αµn = 0, except:

p0 =
k

α′
, α1

1 = α̃1
1 = −α1

−1 = −α̃1
−1 =

−i√
2α′

α2
1 = −α̃2

1 = α2
−1 = −α̃2

−1 =
1√
2α′

,

for some constant k. Substitute these values into the general solution, and
simplify the result for X(σ, τ) = XL(σ+) + XR(σ−) (writing your result in
terms of cos τ, sin τ, cosσ, sinσ).

(f) Check this solution satisfies the constraints for some value of k which you
should find, and describe this solution physically.

(g) Now consider a different solution where all coefficients xµ, pµ, αµn = 0, except:

p0 =
k′

α′
, α1

2 = α̃1
2 = −α1

−2 = −α̃1
−2 =

−i√
2α′

α2
2 = −α̃2

2 = α2
−2 = −α̃2

−2 =
1√
2α′

,

for some constant k′. Simplify this result as in (e), find the value of k′ and
describe how the motion differs from the previous solution.
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