

EXAMINATION PAPER

Exam Code:

Year:

May		2019			MATH4131-WE0	
Title:						
Probability IV						
Time Allowed:	3 h	3 hours				
Additional Material prov	ided: No	None				
Materials Permitted:	No	None				
Calculators Permitted:)	Models Permitted: Use of electronic calculators is forbidden.			
Visiting Students may use dictionaries: No						
Instructions to Candidat	the the An Qu	Credit will be given for: the best TWO answers from Section A, the best THREE answers from Section B, AND the answer to the question in Section C. Questions in Section B and C carry TWICE as many marks as those in Section A.				
					Revision:	

Examination Session:

SECTION A

1. Let $(S_k)_{k=0}^{2n}$ be a 2n-step trajectory of a simple symmetric random walk starting at the origin (and making jumps ± 1 with probability 1/2). Let

$$C_{2n} \stackrel{\text{def}}{=} \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{(n+1)!n!},$$

and consider the probabilities

$$u_{2n} \stackrel{\text{def}}{=} \mathsf{P}(S_{2n} = 0), \quad f_{2k} \stackrel{\text{def}}{=} \mathsf{P}(S_1 \neq 0, S_2 \neq 0, \dots, S_{2k-1} \neq 0, S_{2k} = 0).$$

- (a) Show that $u_{2n} = {2n \choose n} 2^{-2n}$ and $f_{2k} = 2 C_{2k-2} 2^{-2k}$.
- (b) Deduce that $f_{2k} = \frac{1}{2k} u_{2k-2} = u_{2k-2} u_{2k}$.
- (c) Use the result in part b) to show that

$$P(S_1 \neq 0, \dots, S_{2n} \neq 0) = 1 - \sum_{k=1}^n f_{2k} = u_{2n}.$$

- 2. (a) Carefully state the renewal theorem.
 - (b) Let $(u_n)_{n\geq 0}$ be a sequence defined by $u_0=1$ and, for n>0, by $u_n=\sum_{k=1}^n f_k u_{n-k}$, where $f_k>0$ and $\sum_{k=1}^\infty f_k\leq 1$.
 - i. Show that if $\sum_{k=1}^{\infty} \rho^k f_k = 1$ for some $\rho > 0$, then $v_n = \rho^n u_n$, $n \ge 0$, is a renewal sequence generated by a probabilistic collection of weights.
 - ii. Show that as $n \to \infty$, we have $v_n = \rho^n u_n \to c$, for some constant c > 0. Express the value of this constant in terms of the sequence $(f_k)_{k>1}$.
 - iii. If the constant ρ satisfies $\rho > 1$, deduce that u_n decays to zero exponentially fast. (This improves the $\sum_{k=1}^{\infty} f_k < 1$ claim of the renewal theorem.)
- 3. (a) Let $f: \mathbb{R} \to \mathbb{R}$ be a convex real function and let ξ be a random variable with finite mean. Prove Jensen's inequality,

$$\mathsf{E}f(\xi) \geq f(\mathsf{E}\xi)$$
.

(b) Let ξ be a random variable with $\mathsf{E}(|\xi|^r) < \infty$ for some r > 0. Prove Lyapunov's inequality,

$$(\mathsf{E}(|\xi|^r))^{1/r} \ge (\mathsf{E}(|\xi|^s))^{1/s}, \quad \text{where } r > s > 0.$$

4. Carefully define order statistics for a sample of i.i.d. random variables.

Let X_1 and X_2 be independent $\mathsf{Exp}(1)$ random variables, and let $X_{(1)}$ and $X_{(2)}$ be the corresponding order variables.

- (a) Show that $X_{(1)}$ and $X_{(2)} X_{(1)}$ are independent and find their distributions.
- (b) Compute $E(X_{(2)} \mid X_{(1)} = x_1)$ and $E(X_{(1)} \mid X_{(2)} = x_2)$, where $x_1, x_2 > 0$.
- 5. Carefully define the stochastic order \leq for random variables.
 - (a) Let $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ be Gaussian random variables. In the questions below, justify your answer by proving the result or giving a counter-example.
 - i. If $\mu_X \leq \mu_Y$ and $\sigma_X^2 = \sigma_Y^2$, is it true that $X \leq Y$?
 - ii. If $\mu_X = \mu_Y$ and $\sigma_X^2 \leq \sigma_Y^2$, is it true that $X \preccurlyeq Y$?
 - (b) Let $X \sim \mathsf{Poi}(\lambda)$ and $Y \sim \mathsf{Poi}(\mu)$ be Poisson random variables with $\lambda \leq \mu$.
 - i. Show that $X \leq Y$.
 - ii. Show that $\mathsf{E}(X^m) \leq \mathsf{E}(Y^m)$ for all $m \geq 0$.

[Hint: Show that if Z is a random variable with values in $\{0, 1, 2, ...\}$ and $g(\cdot) \geq 0$ is an increasing function with g(0) = 0, then

$$\mathsf{E}\big(g(Z)\big) = \sum_{k>0} \big(g(k+1) - g(k)\big)\,\mathsf{P}(Z>k)\,.\quad]$$

- 6. Let π be a permutation of the set $\{1, 2, \dots, n\}$, chosen uniformly at random.
 - (a) If $A_m = \{m \text{ is a fixed point of } \pi\}$, find the probability $P(A_{m_1} \cap A_{m_2} \cap \cdots \cap A_{m_k})$ for distinct $1 \leq m_1 < m_2 < \cdots < m_k \leq n$.
 - (b) Let S_n be the number of fixed points of π . By using inclusion-exclusion or otherwise, find $\mathsf{P}(S_n > 0) \equiv \mathsf{P}(\bigcup_{m=1}^n A_m)$; deduce that $\mathsf{P}(S_n = 0) \to e^{-1}$ as $n \to \infty$.
 - (c) Show that, as $n \to \infty$, the distribution of S_n converges to Poi(1).

SECTION B

- 7. For an *n*-sample $\{X_k\}_{k=1}^n$ from the uniform distribution on [0,1], let $X_{(k)}$ and $\Delta_{(k)}X$ be, respectively, the *k*th order variable and the *k*th gap.
 - (a) For positive a find the limit $P(nX_{(1)} > a)$ as $n \to \infty$. What does it tell you about the large-n behaviour of $nX_{(1)} \equiv n\Delta_{(1)}X$?
 - (b) By using induction or otherwise, show that

$$P(\Delta_{(1)}X \ge r_1, \dots, \Delta_{(n+1)}X \ge r_{n+1}) = \left(1 - \sum_{k=1}^{n+1} r_k\right)^n$$

if positive r_k satisfy $\sum_{k=1}^{n+1} r_k \leq 1$. Deduce that all gaps $\Delta_{(k)}X$ have the same distribution. How big, on average, is the size of the typical gap $\Delta_{(k)}X$ for large n?

- (c) Let $\Delta_n^* X = \min_k \Delta_{(k)} X$ be the size of the minimal gap of the *n*-sample under consideration. For positive *a* find the limit $P(n^2 \Delta_n^* X > a)$ as $n \to \infty$. What does it tell you about the typical size of the minimal gap $\Delta_n^* X$ for large n?
- 8. Let $(X_n)_{n\geq 1}$ be independent random variables with common $\mathsf{Exp}(\lambda)$ distribution, $\lambda>0$.
 - (a) Find a constant c such that $P\left(\limsup_{n\to\infty}\frac{X_n}{\log n}=c\right)=1.$
 - (b) Define $M_n = \max_{1 \le k \le n} X_k$, the running record value at time n. Show that with the same constant c as above,

$$\mathsf{P}\Big(\limsup_{n\to\infty}\frac{M_n}{\log n}=c\Big)=1\,.$$

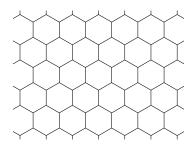
(c) Compute the probability $\mathsf{P}(M_n \leq x)$ and use your result to find a constant c such that

$$\mathsf{P}\Big(\lim_{n\to\infty}\frac{M_n}{\log n}=c\Big)=1\,.$$

In your answer you should clearly state every result you use.

[**Hint:** You may use without proof the following fact: If $(x_n)_{n\geq 1}$ are real numbers, $m_n \equiv \max_{1\leq k\leq n} x_k$, and a monotone sequence $(b_n)_{n\geq 1}$ increases to infinity as $n\to\infty$, then the sets $\{n\in\mathbb{N}: x_n\geq b_n\}$ and $\{n\in\mathbb{N}: m_n\geq b_n\}$ are both finite or both infinite.]

- 9. Let r balls be placed randomly and independently into n boxes. Denote by X_i the number of balls in the ith box and by N the number of empty boxes.
 - (a) Show that $\mathsf{E}(n^{-1}N) = \left(1 \frac{1}{n}\right)^r$ and $\mathsf{Var}\left(n^{-1}N\right) \to 0$ as $n \to \infty$.
 - (b) Find the fraction of the empty boxes in the limit when $r/n \to c > 0$ as $n \to \infty$.
 - (c) Show that $P(X_1 = k) = {r \choose k} (n-1)^{r-k}/n^r$ and identify the limit, as $n \to \infty$, of this probability under the assumption of part (b).
 - (d) Find the probability $P(X_1 = k_1, X_2 = k_2)$; what happens in the limit $n \to \infty$ under the assumption of part (b)?
- 10. Consider bond percolation on the hexagonal lattice (see the picture below), with every bond independently open with probability $p \in [0, 1]$.



- (a) Carefully define the percolation probability $\theta(p)$; show that it is a non-decreasing function of p and hence define the critical value p_c .
- (b) Show that $\theta(p) = 0$ for p > 0 small enough; hence deduce that $p_c \ge p'$ for some p' > 0.
- (c) Show that $\theta(p) > 0$ for 1 p > 0 small enough; hence deduce that $p_{\mathsf{c}} \leq p''$ for some p'' < 1.

SECTION C

- 11. (a) Carefully state Cramér's theorem on large deviations for sums of independent identically distributed random variables. Show that under the conditions of Cramér's theorem the rate function $I(\cdot)$ satisfies the inequality $I(a) \geq 0$ for all $a \in \mathbb{R}$; for which values of a does the equality hold?
 - (b) Let X_1, X_2, \ldots be independent Bernoulli random variables with

$$P(X_i = 1) = p$$
, $P(X_i = -1) = 1 - p$, $p \in (0, 1)$,

and let $S_n = X_1 + \dots + X_n$. Compute the moment generating function $\psi_n(t) \equiv \mathsf{E} e^{tS'_n}$ of the centred sum $S'_n = S_n - \mathsf{E} S_n$ and show that $\psi_n(t) \leq \exp\{nt^2/2\}$ for all real t. Deduce the inequality $\mathsf{P}\big(S'_n \geq an\big) \leq \exp\{-\frac{na^2}{2}\},\ a>0$. [Hint: In your answer you may use without proof the following result:

$$pe^x + (1-p)e^{-x} \le \exp\{(2p-1)x + x^2/2\}$$
 $x \in \mathbb{R}$.

- (c) In the hard times of a prolonged recession an IT company Pearsoft received a takeover bid from one of its competitors. A consultation with shareholders of Pearsoft showed that $n_R = 520,000$ of them rejected the offer whereas $n_A = 480,000$ of the shareholders were prepared to accept it. Once the votes were counted, it has been discovered that a virus on the main server of Pearsoft independently changed each result to the opposite with probability r = 0.45.
 - i. Let R and A be the actual numbers of rejecting and accepting votes, with total $N=A+R=n_A+n_R=1,000,000$. Show that, for given R, the (random) number N_R of counted rejecting votes has expectation $\mathsf{E} N_R=R+Ar-Rr$; find the moment generating function of the centred variable $N_R-\mathsf{E} N_R$.
 - ii. Assuming that $2R \leq N$, ie., that the majority of shareholders actually accepted the offer, bound the probability $q_R = P(N_R \geq n_R \mid R \leq N/2)$. Should *Pearsoft* repeat the consultation?