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SECTION A

1. (a) State the convergence lemma with respect to a lattice Ω in C.

(b) For k ≥ 3, let

fk(z) =
∑
ω∈Ω

1

(z − ω)k
.

Use the Weierstrass M -test to show that fk is a meromorphic function on C.

(c) Identify f3 in terms of the Weierstrass theory of elliptic functions. (No justifi-
cation required.)

2. State and prove Liouville’s Theorem B for elliptic functions for a lattice Ω in C.
Explain how this implies Liouville’s Theorem C.

3. (a) Consider the function fk(z) = fk(z,Ω) from Question 1. For α 6= 0 show that

fk(z;αΩ) = α−kfk

( z
α

; Ω
)
.

(b) Let fk(z; τ) := fk(z; Ωτ ) for Ωτ = Zτ + Z1 with τ ∈ H, the upper half plane.
Explain that we have

Z(aτ + b) + Z(cτ + d) = Ωτ

for
(
a b
c d

)
∈ SL2(Z) and conclude using (a)

fk

(
z

cτ + d
;
aτ + b

cτ + d

)
= (cτ + d)kfk(z; τ).

4. (a) Consider S and T , the standard generators of SL2(Z). Find the fixed points of
S, TS, and TST in the upper half plane, if any. (Justify your findings.)

(b) Let f ∈ Mk, where Mk denotes the space of holomorphic modular forms for
SL2(Z) of weight k. By using (a), or otherwise, show that

f(i)f
(

1
2

+ i
√

3
2

)
= 0 for k 6≡ 0 (mod 12).

5. (a) Let f(τ) =
∑∞

n=0 anq
n be the Fourier expansion of a normalized Hecke eigen-

form for SL2(Z) of weight k. Write down the Euler product of its associated
L-function.

(b) Write τ(p3), for p a prime, as a polynomial in τ(p), where τ(n) denotes Ra-
manujan’s τ -function. Use your expression to explicitly determine τ(8).

6. (a) Let ζ(s) be the Riemann zeta function. Define what is meant by the completed
Riemann zeta function, often denoted Z(s), and give its functional equation.

(b) Let f(τ) =
∑∞

n=0 anq
n ∈M14, f 6= 0, where Mk denotes the space of holomor-

phic modular forms for SL2(Z) of weight k.

Show that the quotient a2

a1
is independent of f ∈M14, and determine its value.

Carefully state what results you use.
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SECTION B

7. (a) State Liouville’s Theorem D (Abel’s relation) for elliptic functions with respect
to a lattice Ω in C.

(b) For u, v ∈ C fixed with u 6≡ ±v mod Ω, consider the function

f(z) = det

1 ℘(z) ℘′(z)
1 ℘(u) ℘′(u)
1 ℘(v) ℘′(v)

 ,

where ℘ denotes the Weierstrass ℘-function with respect to Ω. Show that f
is an elliptic function. Find its order by considering the poles of f . State
explicitly where you use the hypothesis on u and v.

(c) Show that z = u and z = v are zeros of f . Conclude that −(u + v) is also a
zero of f .

(d) Use the associated differential equation/elliptic curve to derive from (c) the an-
alytic form of the addition law for ℘(z). (You may use that the above determi-
nant vanishes exactly when the points (℘(z), ℘′(z)), (℘(u), ℘′(u)), (℘(v), ℘′(v))
are collinear in C2.)

8. Let Ω be a lattice in C with basis {ω1, ω2} and consider the Weierstrass functions
℘(z) and σ(z) with respect to Ω.

(a) State the ‘representation theorem’ for elliptic functions with respect to the
σ-function.

(b) Consider the function

f(z) := ℘(z)− ℘
(ω1

2

)
.

Find the zeros, poles, and the order of f . Use this to express f in terms of σ.

As a consequence find explicitly a meromorphic function g such that f(z) =
(g(z))2, that is, f is the square of g. (Warning: “f 1/2” is not a correct answer.)

(c) Give a one-line argument why g as in (b) cannot be an elliptic function for Ω.

(d) Use the transformation property of the σ-function, given for z ∈ C and ω ∈ Ω
by σ(z+ω) = χ(ω)eη(ω)(z+ω/2)σ(z) with χ(ω) = ±1, to show that g as in (b) is
elliptic for the (sub-)lattice Ω′ = Zω1 + Z(2ω2). What is the order of g (with
respect to Ω′)?
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9. Let k and ` be even integers and let f(τ) =
∑∞

n=0 anq
n and g(τ) =

∑∞
n=0 bnq

n be
two modular forms for SL2(Z) of weight k and `, respectively.

(a) Differentiate the transformation equation for f with respect to γ ∈ SL2(Z) to
arrive at a formula expressing f ′(γτ) in terms of f ′(τ), j(γ, τ) and f(τ).

(b) For f and g as above show that their bracket [f, g], defined by

[f, g] := kfg′ − `f ′g,

is also a modular form for SL2(Z). What is the weight of [f, g]?

(c) Compute the Fourier expansion of [f, g] in terms of the ones for f and g. In
particular, show that [f, g] is in fact a cusp form.

(d) Express the Fourier coefficients of the bracket [E4, E6] of the Eisenstein series
E4(τ) = 1 + 240

∑∞
n=1 σ3(n)qn and E6(τ) = 1 − 504

∑∞
n=1 σ5(n)qn in terms of

Ramanujan’s τ -function.

10. Let f(τ) = E4
6(τ)−2E2

6(τ)E3
4(τ)+E6

4(τ), where E4 and E6 are the Eisenstein series
defined in Question 9.

(a) Show that f ∈ S24(SL2(Z)), the vector space of cusp forms for SL2(Z) of weight
24.

(b) Let ∆(τ) be the discriminant function. Show that the dimension of S24(SL2(Z))
equals 2, and show that g1(τ) := ∆2(τ) and g2(τ) := ∆(τ)E3

4(τ) together form
a basis for it. (Carefully state all the results that you are using.)

(c) Put f̃(τ) = 12−6f(τ) and express f̃(τ) =
∑

n≥1 anq
n in terms of the basis given

in (b). Furthermore, determine explicitly an for n = 1, 2, 3, 4.

(d) Compute the action of the Hecke operator T2 on f̃ as defined in part (c) and
express T2f̃ in terms of the basis {g1, g2} from part (b).
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