

EXAMINATION PAPER

Examination Session: May

2019

Year:

Exam Code:

MATH4151-WE01

Title:

Topics in Algebra & Geometry IV

Time Allowed:	3 hours	
Additional Material provided:	None	
Materials Permitted:	None	
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.
Visiting Students may use diction	onaries: No	

and the best THREE answers from Section B. Questions in Section B carry TWICE as many marks as those in Section A.
--

Revision:

SECTION A

- 1. (a) State the convergence lemma with respect to a lattice Ω in \mathbb{C} .
 - (b) For $k \geq 3$, let

$$f_k(z) = \sum_{\omega \in \Omega} \frac{1}{(z-\omega)^k}.$$

Use the Weierstrass *M*-test to show that f_k is a meromorphic function on \mathbb{C} .

- (c) Identify f_3 in terms of the Weierstrass theory of elliptic functions. (No justification required.)
- 2. State and prove Liouville's Theorem B for elliptic functions for a lattice Ω in \mathbb{C} . Explain how this implies Liouville's Theorem C.
- 3. (a) Consider the function $f_k(z) = f_k(z, \Omega)$ from Question 1. For $\alpha \neq 0$ show that

$$f_k(z; \alpha \Omega) = \alpha^{-k} f_k\left(\frac{z}{\alpha}; \Omega\right).$$

(b) Let $f_k(z;\tau) := f_k(z;\Omega_\tau)$ for $\Omega_\tau = \mathbb{Z}\tau + \mathbb{Z}1$ with $\tau \in \mathbb{H}$, the upper half plane. Explain that we have

$$\mathbb{Z}(a\tau + b) + \mathbb{Z}(c\tau + d) = \Omega_{\tau}$$

for $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ and conclude using (a)

$$f_k\left(\frac{z}{c\tau+d};\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k f_k(z;\tau).$$

- 4. (a) Consider S and T, the standard generators of $SL_2(\mathbb{Z})$. Find the fixed points of S, TS, and TST in the upper half plane, if any. (Justify your findings.)
 - (b) Let $f \in M_k$, where M_k denotes the space of holomorphic modular forms for $SL_2(\mathbb{Z})$ of weight k. By using (a), or otherwise, show that

$$f(i)f\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 0 \quad \text{for } k \not\equiv 0 \pmod{12}.$$

- 5. (a) Let $f(\tau) = \sum_{n=0}^{\infty} a_n q^n$ be the Fourier expansion of a normalized Hecke eigenform for $\text{SL}_2(\mathbb{Z})$ of weight k. Write down the Euler product of its associated L-function.
 - (b) Write $\tau(p^3)$, for p a prime, as a polynomial in $\tau(p)$, where $\tau(n)$ denotes Ramanujan's τ -function. Use your expression to explicitly determine $\tau(8)$.
- 6. (a) Let $\zeta(s)$ be the Riemann zeta function. Define what is meant by the completed Riemann zeta function, often denoted Z(s), and give its functional equation.
 - (b) Let $f(\tau) = \sum_{n=0}^{\infty} a_n q^n \in M_{14}, f \neq 0$, where M_k denotes the space of holomorphic modular forms for $SL_2(\mathbb{Z})$ of weight k. Show that the quotient $\frac{a_2}{a_1}$ is independent of $f \in M_{14}$, and determine its value. Carefully state what results you use.

SECTION B

- 7. (a) State Liouville's Theorem D (Abel's relation) for elliptic functions with respect to a lattice Ω in \mathbb{C} .
 - (b) For $u, v \in \mathbb{C}$ fixed with $u \not\equiv \pm v \mod \Omega$, consider the function

$$f(z) = \det \begin{pmatrix} 1 & \wp(z) & \wp'(z) \\ 1 & \wp(u) & \wp'(u) \\ 1 & \wp(v) & \wp'(v) \end{pmatrix},$$

where \wp denotes the Weierstrass \wp -function with respect to Ω . Show that f is an elliptic function. Find its order by considering the poles of f. State explicitly where you use the hypothesis on u and v.

- (c) Show that z = u and z = v are zeros of f. Conclude that -(u + v) is also a zero of f.
- (d) Use the associated differential equation/elliptic curve to derive from (c) the analytic form of the addition law for $\wp(z)$. (You may use that the above determinant vanishes exactly when the points $(\wp(z), \wp'(z)), (\wp(u), \wp'(u)), (\wp(v), \wp'(v))$ are collinear in \mathbb{C}^2 .)
- 8. Let Ω be a lattice in \mathbb{C} with basis $\{\omega_1, \omega_2\}$ and consider the Weierstrass functions $\wp(z)$ and $\sigma(z)$ with respect to Ω .
 - (a) State the 'representation theorem' for elliptic functions with respect to the σ -function.
 - (b) Consider the function

$$f(z) := \wp(z) - \wp\left(\frac{\omega_1}{2}\right).$$

Find the zeros, poles, and the order of f. Use this to express f in terms of σ . As a consequence find explicitly a meromorphic function g such that $f(z) = (g(z))^2$, that is, f is the square of g. (Warning: " $f^{1/2}$ " is not a correct answer.)

- (c) Give a one-line argument why g as in (b) cannot be an elliptic function for Ω .
- (d) Use the transformation property of the σ -function, given for $z \in \mathbb{C}$ and $\omega \in \Omega$ by $\sigma(z+\omega) = \chi(\omega)e^{\eta(\omega)(z+\omega/2)}\sigma(z)$ with $\chi(\omega) = \pm 1$, to show that g as in (b) is elliptic for the (sub-)lattice $\Omega' = \mathbb{Z}\omega_1 + \mathbb{Z}(2\omega_2)$. What is the order of g (with respect to Ω')?

- 9. Let k and ℓ be even integers and let $f(\tau) = \sum_{n=0}^{\infty} a_n q^n$ and $g(\tau) = \sum_{n=0}^{\infty} b_n q^n$ be two modular forms for $SL_2(\mathbb{Z})$ of weight k and ℓ , respectively.
 - (a) Differentiate the transformation equation for f with respect to $\gamma \in \text{SL}_2(\mathbb{Z})$ to arrive at a formula expressing $f'(\gamma \tau)$ in terms of $f'(\tau)$, $j(\gamma, \tau)$ and $f(\tau)$.
 - (b) For f and g as above show that their bracket [f, g], defined by

$$[f,g] := kfg' - \ell f'g,$$

is also a modular form for $SL_2(\mathbb{Z})$. What is the weight of [f, g]?

- (c) Compute the Fourier expansion of [f, g] in terms of the ones for f and g. In particular, show that [f, g] is in fact a cusp form.
- (d) Express the Fourier coefficients of the bracket $[E_4, E_6]$ of the Eisenstein series $E_4(\tau) = 1 + 240 \sum_{n=1}^{\infty} \sigma_3(n)q^n$ and $E_6(\tau) = 1 504 \sum_{n=1}^{\infty} \sigma_5(n)q^n$ in terms of Ramanujan's τ -function.
- 10. Let $f(\tau) = E_6^4(\tau) 2E_6^2(\tau)E_4^3(\tau) + E_4^6(\tau)$, where E_4 and E_6 are the Eisenstein series defined in Question 9.
 - (a) Show that $f \in S_{24}(SL_2(\mathbb{Z}))$, the vector space of cusp forms for $SL_2(\mathbb{Z})$ of weight 24.
 - (b) Let $\Delta(\tau)$ be the discriminant function. Show that the dimension of $S_{24}(\mathrm{SL}_2(\mathbb{Z}))$ equals 2, and show that $g_1(\tau) := \Delta^2(\tau)$ and $g_2(\tau) := \Delta(\tau) E_4^3(\tau)$ together form a basis for it. (Carefully state all the results that you are using.)
 - (c) Put $\tilde{f}(\tau) = 12^{-6} f(\tau)$ and express $\tilde{f}(\tau) = \sum_{n \ge 1} a_n q^n$ in terms of the basis given in (b). Furthermore, determine explicitly a_n for n = 1, 2, 3, 4.
 - (d) Compute the action of the Hecke operator T_2 on \tilde{f} as defined in part (c) and express $T_2\tilde{f}$ in terms of the basis $\{g_1, g_2\}$ from part (b).