

EXAMINATION PAPER

Examination Session: May

2019

Year:

Exam Code:

MATH4161-WE01

Title:

Algebraic Topology IV

Time Allowed:	3 hours			
Additional Material provided:	None			
Materials Permitted:	None			
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.		
Visiting Students may use dictionaries: No				

Instructions to Candidates: Cr the an Qu in	Fredit will be given for: The best FOUR answers from Section and the best THREE answers from S Questions in Section B carry TWICE The Section A.	n A ection B. as many ma	arks as those
--	---	--------------------------------	---------------

Revision:

SECTION A

1. (a) Let $f: X \to Y$ be a map. Define C_f , the mapping cone of f and define a map $g: Y \to C_f$ which makes

$$X \xrightarrow{f} Y \xrightarrow{g} C_f$$

a cofibration sequence (you do not need to prove it is a cofibration).

- (b) Prove that the composite $gf: X \to C_f$ is homotopic to a constant map.
- (c) Prove that if $h: Y \to Z$ has composite hf homotopic to a constant map, then there is a map $k: C_f \to Z$ with h = kg.
- 2. (a) Let C_* and D_* be chain complexes of *R*-modules for some ring *R*. Define what is meant by a *chain map* $f: C_* \to D_*$.
 - (b) For $n \in \mathbb{N}$, explain how a chain map of chain complexes $f: C_* \to D_*$ gives a homomorphism $f_*: H_n(C) \to H_n(D)$. (You may assume anything you need about the definition of the homology of a chain complex. You should show that your f_* is well defined, but you do not need to show that it is a homomorphism.)
 - (c) Prove that degree n homology $H_n(-)$ is a functor from chain complexes to R-modules,
- 3. For each of the following, say whether you think the statement is true or false. If you think it true, prove it; if you think it false, give a counter-example. You may quote without proving any results from lectures.
 - (a) If $f: X \to Y$ is the inclusion of a subspace X of Y, then $f_*: H_n(X) \to H_n(Y)$ is an injection.
 - (b) If $0 \to A \to B \to C \to 0$ is a short exact sequence of abelian groups, then $B \cong A \oplus C$.
 - (c) Let $X = \{x \in \mathbb{R}^2, \|x\| < 1\}$. Then any map $f \colon X \to X$ has a fixed point.
- 4. (a) Write down the cohomology rings of the spaces $S^2 \vee S^2 \vee S^4$ and $S^2 \times S^2$, without proof.
 - (b) Show that these two spaces are not homotopy equivalent.
- 5. Let Σ_g be the closed orientable surface of genus g. Show that there is a degree one map $\Sigma_g \to \Sigma_h$ if and only if $g \ge h$.
- 6. Let $f: S^4 \to S^2 \times S^2$ be a map. Prove that f is degree zero.

SECTION B

- (a) State and construct the Mayer-Vietoris Exact Sequence for simplicial chain complexes. You should state, but may assume without proof, the Snake Lemma.
 - (b) In this part, assume all spaces are triangulable and all maps can be realised as simplicial maps. You may assume without proof the homology of the circle S^1 . Suppose the space $X = A \cup B$ where the subspaces A, B and $A \cap B$ are all homotopic to S^1 . Prove, using the Mayer-Vietoris sequence or otherwise, that if $H_2(X) \neq 0$ then $H_1(X)$ is a free abelian group.
 - (c) As in the previous part, the triangulable spaces X here have decompositions $X = A \cup B$ where the subspaces A, B and $A \cap B$ are all homotopic to S^1 . In the following, you just need to give the examples without justification.
 - (i) Give an example of X and decomposition $A \cup B$ where $H_2(X) \neq 0$.
 - (ii) Give an example of X and decomposition $A \cup B$ where $H_1(X)$ has a torsion element of order 2.
 - (iii) Give an example of X and decomposition $A \cup B$ where $H_1(X)$ has a torsion element of order 3.
- 8. (a) State and prove the Borsuk-Ulam Theorem. You may assume without proof that, for n > 0, any map $g: S^n \to S^n$ that satisfies g(-x) = -g(x) has odd degree.
 - (b) State and prove the Ham Sandwich Theorem in \mathbb{R}^3 .
- 9. (a) State the Künneth short exact sequence for cohomology.
 - (b) Show that $\operatorname{Tor}_1(H^i(\mathbb{CP}^2;\mathbb{Z}), H^j(S^2;\mathbb{Z})) = 0$ for all i, j. You may state the cohomology groups of \mathbb{CP}^2 and S^2 without proof.
 - (c) It follows from (b) that the left hand map of the Künneth sequence is an isomorphism of graded rings. Compute the cohomology groups of $\mathbb{CP}^2 \times S^2$ with \mathbb{Z} coefficients, and describe explicit generators.
 - (d) Compute the cohomology ring of $\mathbb{CP}^2 \times S^2$. It is enough to give the products of your explicit generators from (c) in a multiplication table.
- 10. (a) Define the Euler characteristic of a closed, connected 4-dimensional manifold M in terms of its homology.
 - (b) Suppose that $\pi_1(M) = \{1\}$, so in particular $H_1(M; \mathbb{Z}) = 0$. Show that $H_2(M; \mathbb{Z})$ is free abelian.
 - (c) Suppose that $\chi(M) = 6$. Compute $H_j(M; \mathbb{Z})$ and $H^j(M; \mathbb{Z})$ for all j.