

EXAMINATION PAPER

Examination Session: May

2019

Year:

Exam Code:

MATH4171-WE01

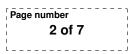
Title:

Riemannian Geometry IV

Time Allowed:	3 hours			
Additional Material provided:	None			
Materials Permitted:	None			
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.		
Visiting Students may use dictionaries: No				

	Instructions to Candidates:	Credit will be given for: the best FOUR answers from Section and the best THREE answers from S Questions in Section B carry TWICE in Section A.	ection B. as many ma	arks as those
--	-----------------------------	--	-------------------------	---------------

Revision:



SECTION A

1. Let $S^2 = \{x \in \mathbb{R}^3 \mid ||x|| = 1\}$ be the standard two-dimensional sphere, let $\mathbb{R}P^2$ be the real projective plane and $\pi : S^2 \to \mathbb{R}P^2$ be the canonical projection, that is, $\pi(x) = \mathbb{R}x$. Let

$$c: (-\varepsilon, \varepsilon) \to S^2, \quad c(t) = (\frac{1}{2}\cos(t), \frac{1}{2}\sin(t), \frac{\sqrt{3}}{2})$$

and

$$f: \mathbb{R}P^2 \to \mathbb{R}, \quad f(\mathbb{R}(z_1, z_2, z_3)) = \frac{(z_1 + z_2 + z_3)^2}{z_1^2 + z_2^2 + z_3^2}.$$

- (a) Let $\gamma = \pi \circ c$. Calculate $\gamma'(0)(f)$.
- (b) Let $\varphi = (x_1, x_2) : U \to \mathbb{R}^2$ with $U = \{\mathbb{R}(z_1, z_2, z_3) \mid z_1 \neq 0\} \subset \mathbb{R}P^2$ be the following coordinate chart of $\mathbb{R}P^2$:

$$\varphi(\mathbb{R}(z_1, z_2, z_3)) = \left(\frac{z_2}{z_1}, \frac{z_3}{z_1}\right)$$

Express $\gamma'(t)$ in the form

$$\alpha_1(t) \frac{\partial}{\partial x_1}\Big|_{\gamma(t)} + \alpha_2(t) \frac{\partial}{\partial x_2}\Big|_{\gamma(t)}$$

- 2. Let (M, g) be a Riemannian manifold of non-positive sectional curvature.
 - (a) Give the definition of a Jacobi field.
 - (b) Let $J : [a, b] \to TM$ be a Jacobi field along a geodesic $c : [a, b] \to M$. Show that non-positive sectional curvature implies

$$\frac{d}{dt} \langle \frac{D}{dt} J, J \rangle \ge 0.$$

- (c) Show that non-positive sectional curvature of M implies that M has no conjugate points.
- 3. Let $M = \{(x, y, z) \in \mathbb{R}^3 \mid z = x^2 + 2y^2\}$ and X be a smooth vector field on \mathbb{R}^3 given by

$$X(x, y, z) = (1 + 2y^2, -xy, 2x).$$

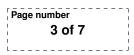
- (a) Show that the restriction of X to the manifold M is a vector field tangential to M.
- (b) A coordinate chart $\varphi: U \to V = (0, 2\pi) \times (0, \infty)$ of M is given by

$$\varphi^{-1}: (0, 2\pi) \times (0, \infty) \to M, \quad \varphi^{-1}(\alpha, h) = (h \cos \alpha, \frac{1}{\sqrt{2}} h \sin \alpha, h^2).$$

Calculate $f, g: V \to \mathbb{R}$ explicitly such that

$$X(\varphi^{-1}(\alpha,h)) = f(\alpha,h)\frac{\partial}{\partial\alpha}|_{\varphi^{-1}(\alpha,h)} + g(\alpha,h)\frac{\partial}{\partial h}|_{\varphi^{-1}(\alpha,h)}.$$

CONTINUED



4. Let $\mathbb{H}^2 = \{z = x + yi \in \mathbb{C} \mid y > 0\}$ be the upper half plane model of the hyperbolic plane with metric

$$g_z(v,w) = \frac{\langle v,w \rangle}{y^2}, \quad \text{for all } v,w \in T_z \mathbb{H}^2,$$

where $\langle \cdot, \cdot \rangle$ is the standard Euclidean inner product. Let $c : [a, b] \to \mathbb{H}^2$, c(t) = ti.

- (a) Calculate the length L(c).
- (b) Let $\gamma : [\alpha, \beta] \to \mathbb{H}^2$ be another smooth curve with $\gamma(\alpha) = ai$ and $\gamma(\beta) = bi$. Show that $L(\gamma) \ge L(c)$.
- 5. Let G be a Lie group and $L_g: G \to G$ be defined by $L_g(h) = gh$ for all $g, h \in G$. Recall that a vector field X on G is called left invariant if $DL_g \circ X = X \circ L_g$ for all $g \in G$, that is, for all $g, h \in G$,

$$DL_g(h)(X(h)) = X(L_g(h)) = X(gh).$$

(a) Let $F: M \to N$ be a smooth map between the manifolds $M, N, v \in T_pM$ and $f \in C^{\infty}(N)$. Show that we have

$$(DF(p)(v))(f) = v(f \circ F).$$

(b) Let X be a left invariant vector field on G. Using (a), show that we have the following identity in $C^{\infty}(G)$ for all $g \in G$ and all $f \in C^{\infty}(G)$:

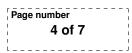
$$X(f \circ L_g) = (Xf) \circ L_g.$$

- 6. (a) Give the definition of an affine connection ∇ on a smooth manifold.
 - (b) Let ∇^1 be an affine connection on a smooth manifold M. Show that ∇^2 , defined by

$$\nabla_X^2 Y = [X, Y] + \nabla_Y^1 X$$

for any pair of smooth vector fields X, Y on M, is also an affine connection.

ED01/2019



SECTION B

- 7. Let (M, g) be a Riemannian manifold and $f \in C^{\infty}(M)$. Let \widehat{g} be a second Riemannian metric on M given by $\widehat{g} = e^f \cdot g$. Let ∇ and $\widehat{\nabla}$ be the Levi-Civita connections associated to the metrics g and \widehat{g} , respectively.
 - (a) Let $\varphi = (x_1, \ldots, x_n) : U \to V$ (with $U \subset M$ and $V \subset \mathbb{R}^n$ open) be a local coordinate chart of M. Show that

$$\widehat{\nabla}_{\frac{\partial}{\partial x_i}}\frac{\partial}{\partial x_j} = \nabla_{\frac{\partial}{\partial x_i}}\frac{\partial}{\partial x_j} + \frac{1}{2}\left(\frac{\partial f}{\partial x_j}\frac{\partial}{\partial x_i} + \frac{\partial f}{\partial x_i}\frac{\partial}{\partial x_j}\right) - \frac{1}{2}g_{ij}\sum_k \left(\sum_l g^{kl}\frac{\partial f}{\partial x_l}\right)\frac{\partial}{\partial x_k}.$$

(b) Let $M = \mathbb{H}^2 = \{(x, y) \in \mathbb{R}^2 \mid y > 0\}$ with the identity map as a global coordinate system. Let g, \hat{g} be the following two Riemannian metrics on M: $g_{ij} = \delta_{ij}$, that is, g is the standard Euclidean metric and $\hat{g}_{ij} = \frac{1}{y^2}g_{ij}$, that is, \hat{g} is the hyperbolic plane metric. Use (a) to calculate

$$\widehat{\nabla}_{\frac{\partial}{\partial x}}\frac{\partial}{\partial x},\quad \widehat{\nabla}_{\frac{\partial}{\partial x}}\frac{\partial}{\partial y},\quad \widehat{\nabla}_{\frac{\partial}{\partial y}}\frac{\partial}{\partial x},\quad \widehat{\nabla}_{\frac{\partial}{\partial y}}\frac{\partial}{\partial y}.$$

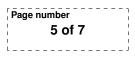
Hint: You may use without proof that

$$\nabla_{\frac{\partial}{\partial x}}\frac{\partial}{\partial x} = \nabla_{\frac{\partial}{\partial x}}\frac{\partial}{\partial y} = \nabla_{\frac{\partial}{\partial y}}\frac{\partial}{\partial x} = \nabla_{\frac{\partial}{\partial y}}\frac{\partial}{\partial y} = 0.$$

(c) Let (M,g) be a Riemannian manifold and $\hat{g} = C \cdot g$ with C > 0. Use (a) to show that

$$\widehat{K}(\Sigma_p) = \frac{1}{C} K(\Sigma_p),$$

where K and \hat{K} denote the sectional curvatures of a 2-plane $\Sigma_p \subset T_p M$ with respect to the metrics g and \hat{g} , respectively.



8. Let $S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ and $\varphi^{-1}(\alpha, \beta) = (\sin \alpha \sin \beta, \sin \alpha \cos \beta, \cos \alpha), \alpha \in (0, \pi), \beta \in [0, 2\pi]$ be a coordinate chart. Fix $\alpha = \pi/6$ and consider the closed curve

Exam code

MATH4171-WE01

$$c(t) = \varphi^{-1}(\pi/6, t), \qquad t \in [0, 2\pi],$$

and the vector field

$$X(t) = a(t)\frac{\partial}{\partial\alpha}|_{c(t)} + b(t)\frac{\partial}{\partial\beta}|_{c(t)}$$

along c.

(a) Calculate the first fundamental form g_{ij} of this coordinate chart and show that

$$\nabla_{\frac{\partial}{\partial\alpha}}\frac{\partial}{\partial\alpha} = 0, \qquad \nabla_{\frac{\partial}{\partial\alpha}}\frac{\partial}{\partial\beta} = \nabla_{\frac{\partial}{\partial\beta}}\frac{\partial}{\partial\alpha} = \frac{\cos\alpha}{\sin\alpha}\frac{\partial}{\partial\beta}, \qquad \nabla_{\frac{\partial}{\partial\beta}}\frac{\partial}{\partial\beta} = -\sin\alpha\cos\alpha\frac{\partial}{\partial\alpha}.$$

(b) Calculate the solution of the equation

$$\frac{D}{dt}X(t) = X(t), \qquad X(0) = c'(0).$$

Hint: You may use $\sin(\pi/6) = 1/2$ and without proof that the solution of

$$\begin{pmatrix} a'(t) \\ b'(t) \end{pmatrix} = \begin{pmatrix} 1 & c_1 \\ -c_2 & 1 \end{pmatrix} \begin{pmatrix} a(t) \\ b(t) \end{pmatrix}, \qquad \begin{pmatrix} a(0) \\ b(0) \end{pmatrix} = \begin{pmatrix} a_0 \\ b_0 \end{pmatrix}$$

for $c_1, c_2 > 0$ is given by

$$\begin{pmatrix} a(t) \\ b(t) \end{pmatrix} = \begin{pmatrix} e^t \cos(\sqrt{c_1 c_2} t) & e^t \sqrt{\frac{c_1}{c_2}} \sin(\sqrt{c_1 c_2} t) \\ -e^t \sqrt{\frac{c_2}{c_1}} \sin(\sqrt{c_1 c_2} t) & e^t \cos(\sqrt{c_1 c_2} t) \end{pmatrix} \begin{pmatrix} a_0 \\ b_0 \end{pmatrix}.$$

9. (a) Let $SL(n, \mathbb{R}) = \{A \in M(n, \mathbb{R}) \mid \det(A) = 1\}$. Show that

$$T_{\mathrm{Id}}SL(n,\mathbb{R}) = \{ C \in M(n,\mathbb{R}) \mid \mathrm{tr}(C) = 0 \}.$$

Hint: You may use without proof that, for every smooth curve $A : (-\epsilon, \epsilon) \rightarrow GL(n, \mathbb{R}) = \{A \in M(n, \mathbb{R}) \mid \det(A) \neq 0\}$, we have:

$$(\det A)'(t) = (\det A(t)) \cdot \operatorname{tr}(A^{-1}(t)A'(t))$$

and that dim $SL(n, \mathbb{R}) = n^2 - 1$.

(b) Let G be a Lie group with a bi-invariant Riemannian metric $\langle \cdot, \cdot \rangle$ and X, Y, Z be left invariant vector fields on G. Derive from the identity

$$\nabla_X Y = \frac{1}{2} [X, Y], \tag{1}$$

that

$$R(X,Y)Z = \frac{1}{4}[Z,[X,Y]].$$

Hint: You may use (1), Jacobi's identity and the fact that Lie brackets of left invariant vector fields are again left invariant without proof.

(c) Assume that X, Y are orthonormal. Using (b), show that the sectional curvature of the planes Σ_h , spanned by $X(h), Y(h) \in T_h G$, is given by

$$K(\Sigma_h) = \frac{1}{4} \| [X, Y] \|^2.$$

(d) The tangent space $T_{\text{Id}}O(n) = \{X \in M(n, \mathbb{R}) \mid X^{\top} = -X\}$ can be canonically identified with the Lie algebra of left invariant vector fields on O(n). We define a bi-invariant metric $\langle \cdot, \cdot \rangle$ on O(n) via

$$\langle X, Y \rangle = \frac{1}{2} \operatorname{tr}(X^{\top}Y)$$

and the Lie bracket by

$$[X,Y] = XY - YX.$$

Show that

$$X = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in T_{\mathrm{Id}}O(3) \quad \text{and} \quad Y = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \in T_{\mathrm{Id}}O(3)$$

are orthonormal in $T_{\text{Id}}O(3)$ and calculate the sectional curvature of the planes spanned by X, Y.

10. Let $M = \mathbb{R}^2$ be equipped with the Riemannian metric

$$g_{(x,y)}(v,w) = \frac{4}{(1+x^2+y^2)^2} \langle v,w \rangle$$
 for all $v,w \in T_{(x,y)}M$,

where $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product.

(a) Let $f: S^2 \setminus \{(0,0,1)\} \to M$ be the stereographic projection from the standard unit sphere $S^2 \subset \mathbb{R}^3$. That is: For $(z_1, z_2, z_3) \in S^2 \setminus \{(0,0,1)\}$, let $(x, y, 0) \in \mathbb{R}^3$ be the intersection point of the straight Euclidean line through (0,0,1) and (z_1, z_2, z_3) with the horizontal coordinate plane. Then we define $f(z_1, z_2, z_3) =$ (x, y). Show that

$$f(z_1, z_2, z_3) = \left(\frac{z_1}{1 - z_3}, \frac{z_2}{1 - z_3}\right)$$

(b) Show that the inverse map f^{-1} is given by

$$f^{-1}(x,y) = \left(\frac{2x}{x^2 + y^2 + 1}, \frac{2y}{x^2 + y^2 + 1}, \frac{x^2 + y^2 - 1}{x^2 + y^2 + 1}\right).$$

(c) Let $z = (z_1, z_2, z_3) \in S^2 \setminus \{(0, 0, 1)\}$ and $v = (v_1, v_2, v_3) \in T_z S^2 \setminus \{(0, 0, 1)\}$. Show that

$$Df(z)(v) = \frac{1}{(1-z_3)^2} \left((1-z_3)v_1 + z_1v_3, (1-z_3)v_2 + z_2v_3 \right).$$

Let $z = (1, 0, 0), v = (0, v_2, v_3) \in T_z S^2 \setminus \{(0, 0, 1)\}$ and (x, y) = f(z). Calculate w = Df(z)(v) and show that

$$\langle v, v \rangle = g_{(x,y)}(w, w),$$

where $\langle \cdot, \cdot \rangle$ is the Euclidean inner product and $g_{(x,y)}$ is given at the start of the question.

(d) We equip $S^2 \setminus \{(0, 0, 1)\}$ with the Riemannian metric induced by the Euclidean inner product in \mathbb{R}^3 . Using the fact that $f: S^2 \setminus \{(0, 0, 1)\} \to M$ is an isometry (you do not need to prove this), decide whether (M, g) is geodesically complete and justify your answer.