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Useful formulae:

• The volume of a ball Bn = {(x1, x2, . . . , xn) | x2
1 + x2

2 + · · · + x2
n ≤ R2 } and the

surface area of a sphere Sn−1 = {(x1, x2, . . . , xn) | x2
1 + x2

2 + · · · + x2
n = R2 } of radius R

in n dimensions are:

Vol(Bn) =
πn/2

Γ(n/2 + 1)
Rn , Area(Sn−1) =

2πn/2

Γ(n/2)
Rn−1 .

• The one-dimensional Gaussian integral:∫ ∞
−∞

dx e−ax
2

=

√
π

a
.

• Stirling’s formula:
log n! ≈ n log n− n .

• Gamma function – definition and properties:

Γ(x) =

∫ ∞
0

e−t tx−1 dt Re(x) > 0 ,

Γ(x+ 1) = xΓ(x)

Γ (1/2) =
√
π

Γ(n+ 1) = n! (n ∈ N) .

• Dirac delta function:

δ(x) =

∫ ∞
−∞

dk

2π
ei k x .
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SECTION A

1. The energy fundamental relation expresses the internal energy E of a system in
terms of the other extensive quantities like the entropy S, the volume V and the
number of particles N . Consider a system whose energy fundamental relation is

E(S, V,N) = αSaV −bN c ,

for some positive constant α.

(a) Find the condition on the parameters {a, b, c} for which the above energy
fundamental relation is acceptable.

(b) Find the temperature T = T (S, V,N) and determine the condition on the
parameters {a, b, c} which ensures that the 3rd Law of Thermodynamics is
upheld.

(c) Write down the enthalpy H(S, p,N) of the system.

2. The internal energy of a fluid is a function E(S, V,N) of its entropy S, volume V
and number of particles N .

(a) Write down an expression for the differential dE according to the 1st Law of
Thermodynamics.

(b) Perform a double Legendre transform with respect to the pairs of conjugate
variables (S, T ) and (N,µ) to define the grand canonical potential Φ(T, V, µ),
and compute its differential dΦ.

(c) Express the entropy S, the pressure p and the number of particles N in terms
of the temperature T , the volume V and the chemical potential µ.

(d) Use the extensivity of the grand canonical potential to deduce that

Φ(T, V, µ) = −p(T, µ)V .

3. The probability density for the speed of non-interacting monatomic gas particles
moving in two spatial dimensions is given by the Rayleigh distribution:

p(v) =
1

N
v exp

(
− v2

2a2

)
, a2 = kBT/m . (1)

The speed v = |v| is the the modulus of the velocity vector v, and N is a normal-
ization constant.

(a) Determine N so that the probability distribution is correctly normalized.

(b) Compute the mean 〈v〉 and the variance σ2
v of this probability distribution.

(c) Compute the average energy of a gas particle. Is the result consistent with the
equipartition theorem?

(d) Find the probability density pE(E) for the energy of a gas particle.
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4. (a) Define the canonical partition function for a quantum system maintained at a
fixed temperature T . How is it related to the probability distribution for the
canonical ensemble?

(b) Consider a classical system of N identical non-interacting particles confined
in a volume V in three dimensions. Compute the canonical partition function
and calculate the mean energy 〈E〉, the free energy F and the entropy S of the
system in the limit where N is large.

5. (a) Define the density of states g(E) of a system. Write a formula for the exact
density of states g(E) of a quantum-mechanical system with energy eigenstates
|n〉 and energy eigenvalues En, and use it to express the canonical partition
function of the system as an integral over the energies.

(b) A quantum-mechanical rotor with moment of inertia I has a Hamiltonian Ĥ
with eigenvalues and eigenstates given by

Ĥ|j,mj〉 =
~2

2I
j(j + 1)|j,mj〉 ≡ Ej,mj

|j,mj〉

where j = 0, 1, 2, 3, . . . and mj = −j,−j + 1, . . . , j − 1, j. Write an exact
formula for its density of states g(E), and show that it is approximated by the
density of states

gc(E) =

{
0 , E < 0

2I/~2 , E > 0

for energies such that |E| � ~/
√
I.

6. Consider a quantum system of N non-interacting bosons, where each boson can
occupy one of the discrete one-particle states |r〉 of energy Er. The ground state |0〉
has zero energy E0 = 0.

(a) Write down the Bose-Einstein distribution for the average number of bosons
〈nr〉 that occupy state |r〉. For which range of the chemical potential µ and of
the fugacity z = eβµ is the formula sensible?

(b) Approximate the Bose-Einstein distribution for z � 1, which turns out to be
a high temperature limit, to derive the classical Maxwell-Boltzmann statistics.

(c) Analyse the expected number 〈n0〉 of bosons in the ground state in the limit
where z is very close to 1. Taking into account that the system consists of a
finite (though very large) number N of bosons, can z get arbitrarily close to
1? If not, estimate the maximum value of z that can be physically realised, as
a function of N � 1.
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SECTION B

7. Consider a gas with a fixed number of constituents N (that is omitted in the fol-
lowing).

(a) Starting from the exact differentials of the thermodynamic potentials E(S, V ),
F (T, V ), G(T, p) and H(S, p), derive the four Maxwell relations for the partial
derivatives of S, T , V and p.

(b) Derive the identities

∂S

∂T

∣∣∣∣
p

=
∂S

∂T

∣∣∣∣
V

+
∂S

∂V

∣∣∣∣
T

∂V

∂T

∣∣∣∣
p

,
∂S

∂p

∣∣∣∣
T

=
∂S

∂V

∣∣∣∣
T

∂V

∂p

∣∣∣∣
T

.

(c) Show that if three variables x, y and z satisfy a constraint f(x, y, z) = 0 for all
x, y and z, then

∂x

∂y

∣∣∣∣
z

∂y

∂z

∣∣∣∣
x

∂z

∂x

∣∣∣∣
y

= −1 .

(d) Express the heat capacities at constant volume CV and at constant pressure
Cp in terms of derivatives of the entropy for reversible processes. Show that:

Cp − CV = T
∂V

∂T

∣∣∣∣
p

∂p

∂T

∣∣∣∣
V

= −T ∂V
∂T

∣∣∣∣2
p

∂p

∂V

∣∣∣∣
T

,

∂E

∂V

∣∣∣∣
T

= T
∂p

∂T

∣∣∣∣
V

− p ,

∂CV
∂V

∣∣∣∣
T

= T
∂2p

∂T 2

∣∣∣∣
V

.
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8. An isolated system consists of a fixed number N of non-interacting quantum parti-
cles, which are located at different positions in space and are therefore distinguish-
able. Each particle can sit in either of two states: the ground state |0〉 or the excited
state |1〉, which have energies ε0 = 0 and ε1 = ε respectively.

(a) Which quantities specify a macrostate of the system? Express these quantities
in terms of ε and of the occupation numbers N0 and N1 which count how many
particles sit in the ground state and in the excited state respectively.

(b) Which quantities specify a microstate of the system? Relate the quantities
that specify a microstate to the quantities that specify the macrostate.

(c) Derive a general formula for the number of microstates that realizes a given
macrostate of the system, and write the discrete probability distribution for a
microstate in the appropriate statistical ensemble.

(d) Compute the entropy S(E,N) of the system and approximate it using Stirling’s
formula in the thermodynamic limit of large N and E. Rewrite the result in
terms of xi = Ni/N (i = 0, 1), the “filling fractions” for the two states.

(e) Compute the temperature T (E,N) as a function of the energy E and the
number of particles N . Invert the formula to express the energy E(T,N) in
terms of the temperature T and the number of particles N .

(f) Analyse the low temperature and the high temperature limits of the energy:
how are the two states occupied in these two limits?

9. Let us examine the thermodynamics of an anharmonic oscillator in one dimension.

(a) First consider a classical anharmonic oscillator whose Hamiltonian is

H(q, p) =
p2

2m
+ aq2 + bq4 ,

where a and b are positive numbers. Calculate the canonical partition function
and from it the heat capacity at constant volume for a system of N non-
interacting indistinguishable anharmonic oscillators. You should work in the
approximation where the anharmonicity is small, that is you can assume that
b/a2 � 1 and derive your results to leading order in this small parameter.

(b) Now consider the quantum version of the above. The energy spectrum of a
single oscillator is given to be

En =

(
n+

1

2

)
~ω + x

(
n+

1

2

)2

~ω , n = 0, 1, 2, . . .

Compute the grand canonical partition function of this system, correct to lead-
ing order in the small parameter x which now measures the anharmonicity. You
may use the formula

d2

dy2

1

2 sinh y
2

=
3 + cosh y

16 sinh3 y
2

.
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10. An ideal non-relativistic Fermi gas confined to a volume V is described by the grand
canonical partition function

Z ≡ e−βΦ =
∏
r

(1 + ze−βEr) , z = eβµ ,

where r labels the one-particle states (of energies Er) available to a single fermion
and µ is the chemical potential.

(a) Ignoring any internal degrees of freedom, such as spin, and assuming that the
energy levels are almost continuous, Er ≈ ~2k2/(2m), so that a sum over
one-particle states can be approximated by an integral∑

r

≈ V

(2π)3

∫
d3k ,

show that the mean particle number 〈N〉 of the system can be written as

〈N〉 = V λ3f3/2(z)

where λ is a constant that you should determine and

fν(z) =
1

Γ(ν)

∫ ∞
0

dx
xν−1

z−1ex + 1
.

(b) Show that the mean energy is similarly given by

〈E〉 =
3

2

V λ3

β
f5/2(z) .

(c) Using the following approximations, valid for large z,

f3/2(z) ≈ 4(ln z)3/2

3
√
π

(
1 +

π2

8(ln z)2

)
, f5/2(z) ≈ 8(ln z)5/2

15
√
π

(
1 +

5π2

8(ln z)2

)
,

show that at low temperatures

〈E〉
〈N〉

≈ 3

5
EF (1 +O(1/β2)) ,

where the Fermi energy EF is to be determined in terms of the average number
of particles 〈N〉 and the volume V .
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SECTION C

11. The Ising chain consists of a set of N spins si, i = 1, 2, ..., N , which can take
the values ±1 and are equally spaced on a one-dimensional periodic (i.e. circular)
lattice. The energy for a particular configuration of spins {si} is given by

E[{si}] = −J
N∑
i=1

sisi+1 −
B

2

N∑
i=1

(si + si+1) ,

where we impose the periodic boundary condition sN+1 ≡ s1. Here B is the external
magnetic field (rescaled by the dipole moment) and J is a coupling constant that is
assumed to be positive.

(a) Briefly describe the effect on the spins of the two contributions to the energy.

(b) Write down the canonical partition function ZN for the system, and prove that

ZN = tr(TN) ,

where T is the 2× 2 transfer matrix

T =

(
eβ(J+B) e−βJ

e−βJ eβ(J−B)

)
.

Express the partition function in terms of the eigenvalues of the transfer matrix,
which you should determine.

(c) Assuming that N � 1, find an estimate for the partition function and the
average magnetization m =

∑N
i=1〈si〉 of the system.

(d) Does the system exhibit spontaneous magnetization, that is a non-vanishing
average magnetization at low temperatures in the absence of a magnetic field?
Briefly discuss the physical interpretation of this fact.
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