

EXAMINATION PAPER

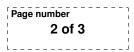
Examination Session: May/June

2020

Year:

Exam Code:

MATH1561-WE01


Title:

Single Mathematics A

Time (for guidance only):	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Instructions to Candidates:	Credit will be given for your answers to all questions. All questions carry the same marks.	
	Please start each question on a new page. Please write your CIS username at the top of each page.	
	Show your working and explain your reasoning.	

Revision:

- **Q1 1.1** Write down the derivatives of $\sinh(x)$ and $\cosh(x)$ and use these to find the derivative of $\tanh(x)$.
 - **1.2** Compute the derivative of $\operatorname{arctanh}(x)$, using your previous result and

 $\tanh(\operatorname{arctanh}(x)) = x$.

Exam code

MATH1561-WE01

Simplify your answer so it is free of any hyperbolic functions (sinh, cosh, tanh) as well as of their inverses.

1.3 Compute the following three limits

$$\lim_{x \to 0} \frac{x}{\cos(3x - \pi/2)}, \qquad \lim_{x \to 2} \frac{\ln(x - 1)}{(x - 2)}, \qquad \lim_{x \to \infty} \frac{\sin(2/x)}{x}.$$

You are allowed to use L'Hôpital's rule for only one of the three limits.

Q2 2.1 Compute the following definite integral

$$\int_0^{\sqrt{\pi/2}} x^3 \sin(3x^2) dx \, .$$

2.2 Compute the following indefinite integral

$$\int \frac{3x-1}{(x-1)(x^2-3x+2)} dx.$$

2.3 Compute the following indefinite integral

$$\int \frac{\arcsin^2(x)}{\sqrt{1-x^2}} dx \, .$$

2.4 Find the real part, the imaginary part, the modulus and the argument of

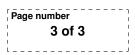
$$\exp\left((1-2i)(1/2+i)(3+i\pi)\right)$$
.

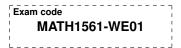
Q3 3.1 Find all real solutions x to the equation

$$\ln(x + 12/x) = \ln(x) + \ln(7/x).$$

3.2 With z = x + iy, find the (possibly zero) constants a, b and c such that

$$\tanh(z)\tanh(z+i\pi/2) = a + b\tanh(z) + \frac{c}{\tanh(z)}$$


3.3 Find all complex solutions z to the equation


$$z^5 + (1-i)z^2 = 0.$$

You can give your answers in the polar form. State clearly the number of distinct solutions you found.

3.4 Find all complex solutions z to the equation

$$\cos(z) = \sin(z - \pi).$$

Q4 4.1 Determine whether the series

$$\sum_{n=1}^{\infty} \frac{2}{1+n^2}, \qquad \sum_{n=1}^{\infty} \frac{1+\sqrt{n}}{1+n^2}$$

converge.

4.2 Show that the series
$$\sum_{n=1}^{\infty} \frac{n}{1+n}$$
 diverges.

 $\mathbf{Q5}~~\mathbf{5.1}$ Compute the radius of convergence of the following power series :

$$\sum_{k=1}^{\infty} \frac{1-k}{2} x^k, \qquad \sum_{k=1}^{\infty} (k!+5) x^k.$$

5.2 Find the Taylor series for the function $f(x) = 1/x^2$ about x = -1.

Q6 6.1 Find the values of $\lambda \in \mathbb{R}$ for which the following system of linear equations has exactly one solution:

$$\begin{cases} \lambda x + y - z &= 0\\ 2x + \lambda y + z &= 1\\ y + z &= 2. \end{cases}$$

6.2 Solve the following system for (x, y, z):

$$\begin{cases} x-y = 0\\ x+y+z = 0\\ y-z = 2 \end{cases}$$

Q7 7.1 Let $A = \begin{pmatrix} 5 & 4 \\ -\frac{3}{2} & 0 \end{pmatrix}$. Compute A^{10} .

7.2 Calculate the inverse of the matrix $\mathbf{1}$

$$\begin{pmatrix} 7 & 2 & 1 \\ 0 & 3 & -1 \\ -3 & 4 & -2 \end{pmatrix}.$$