

EXAMINATION PAPER

Examination Session: May/June

2020

Year:

Exam Code:

MATH1607-WE01

Title:

Dynamics I

Time (for guidance only):	2 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Instructions to Candidates:	Credit will be given for your answers to all questions. All questions carry the same marks.
	Please start each question on a new page. Please write your CIS username at the top of each page.
	Show your working and explain your reasoning.

Revision:

- **Q1 1.1** A particle of mass *m* is moving along the *x*-axis, and is slowed by a frictional force $F = -\alpha \sqrt{v}$, where *v* is the speed of the particle and α is a constant. If the initial speed is *u*, how long does it take the particle to come to rest?
 - **1.2** A particle of mass m moves on the half-line x > 0, and is repelled from x = 0 by a force $F = k/\sqrt{x}$, where k is a positive constant. Determine the position x(t) of the particle, given the initial conditions x(0) = 1 and $\dot{x}(0) = 2\sqrt{k/m}$.
 - **1.3** A particle of unit mass moves along a line, attached to a spring with spring constant 5, and subject to a damping force of magnitude $\alpha |v|$ where α is a positive constant and v is the velocity of the particle.
 - (a) Write down the equation of motion for the position x(t) of the particle.
 - (b) Calculate x(t) if $\alpha = 2$, the particle is initially at equilibrium, and it is given the initial velocity v(0) = 1.
 - (c) For which values of α is the system overdamped?
- **Q2** 2.1 A particle of mass *m* moves along the *x*-axis, acted on by a force arising from the potential $V(x) = me^x(x-1)^2$.
 - (a) Sketch the graph of V, and find the equilibrium position(s) of the particle.
 - (b) Calculate the period of small oscillations about the stable equilibrium.
 - (c) The particle starts from x = 0 with initial speed u. How large does u have to be in order that $x(t) \to -\infty$ as $t \to \infty$?
 - **2.2** A particle of mass m travelling with speed v along the x-axis hits a stationary particle of mass 2m. After the collision, both particles are moving in the same direction; particle m has speed v_1 and particle 2m has speed v_2 , where $v_1 v_2 = v/2$. Compute the loss of kinetic energy in the collision, in terms of m and v.
- **Q3** 3.1 A ball of mass m = 1 and electric charge q = 1 moves under the influence of gravity and of the Lorentz force $F = v \times B$, where v is the velocity of the ball, and B is a constant magnetic field of magnitude B which points vertically upwards from the ground. The ball is thrown from ground level with speed u, at an angle α to the ground. Determine the subsequent position of the ball. Hence find a condition on the quantity $S = Bu \sin \alpha$ which ensures that the ball will fall back to the ground at exactly the position it was thrown from. [Denote by g the magnitude of the the acceleration due to gravity.]
 - **3.2** (a) Write down the wave equation with wave speed c, and its general solution (no derivation or proof is needed).
 - (b) Find the deviation u(x,t) of a vibrating string which satisfies the initial conditions u(x,0) = 0 and $\partial u(x,0)/\partial t = cx/(1+x^2)$.

Q4 4.1 A particle of unit mass m = 1 moves under the action of an attractive central force $f(r) = -\alpha/r^2 - \beta/r^3$, where α and β are positive constants, and (r, θ) are polar coordinates. You may use the fact that u = 1/r satisfies the equation

$$\frac{d^2u}{d\theta^2} + u = -\frac{f(u^{-1})}{L^2u^2},$$

where L is the magnitude of the angular momentum. At time t = 0, the particle is at $(r, \theta) = (c, 0)$, and is moving with speed $\sqrt{4\beta/(3c^2)}$ in a direction perpendicular to the line joining it to the centre.

- (a) Evaluate L.
- (b) Find the function $u(\theta)$, in terms of θ and the constants α , β and c.
- 4.2 A compound pendulum consists of a light rigid rod of length L which swings freely in a vertical plane, about a horizontal axis through one end. A mass m is attached to the other end of the rod, and a mass 2m is attached halfway along the rod.
 - (a) How far from the axis is the centre of mass of this system?
 - (b) Compute the moment of inertia of the system about its axis.
 - (c) If the rod is rotating with angular velocity ω , what is the total kinetic energy K?
 - (d) Compute its potential energy V in terms of the angle θ by which the rod deviates from hanging downwards. [Let g denote the acceleration due to gravity.]
 - (e) Hence write down the equation of motion for $\theta(t)$.