

EXAMINATION PAPER

Examination Session: May/June

2020

Year:

Exam Code:

MATH2581-WE01

Title:

Algebra II

Time (for guidance only):	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Instructions to Candidates:	Credit will be given for your answers to all questions. All questions carry the same marks.
	Please start each question on a new page. Please write your CIS username at the top of each page.
	Show your working and explain your reasoning.

Revision:

- **Q1** 1.1 Let R be an integral domain and let $a, b \in R$ satisfying $a^3 = b^3$ and $a^5 = b^5$. Prove that a = b.
 - **1.2** Let $R = \mathbb{Z}[\sqrt{-13}] := \{a + b\sqrt{-13} : a, b \in \mathbb{Z}\} \subset \mathbb{C}$ be an integral domain. Throughout, you may use that the map $N : R \to \mathbb{Z} : N(a+b\sqrt{-13}) = a^2+13b^2$ is multiplicative, i.e., N(xy) = N(x)N(y) for any $x, y \in R$, and the fact that the only units in this ring are ± 1 .
 - (i) Prove that 2 is an irreducible element of R but is not a prime.
 - (ii) Prove that $gcd(14, 7 + 7\sqrt{-13})$ does not exist in R.
 - (iii) Prove that the quotient ring R/(2) has four elements.
 - (iv) Is R/(2) isomorphic to either $\mathbb{Z}/4$ or $\mathbb{Z}/2 \times \mathbb{Z}/2$ as a ring?
- **Q2** 2.1 Prove that given any $a, b \in \mathbb{Z}$, the polynomial $x^2 + \bar{a}x + \bar{b}$ is reducible in $(\mathbb{Z}/5)[x]$ if and only if there is an integer $y \in \mathbb{Z}$ satisfying $y^2 \equiv a^2 + b \mod 5$.
 - **2.2** List all pairs $\bar{a}, \bar{b} \in \mathbb{Z}/5$ such that the polynomial $x^2 + \bar{a}x + \bar{b}$ is irreducible in $(\mathbb{Z}/5)[x]$.
 - **2.3** Factor $x^4 + x^3 + x^2 \overline{3}x + \overline{1}$ into irreducibles in $(\mathbb{Z}/5)[x]$.
 - Let $f(x) = x^4 + x^3 + x^2 3x + 1$ in $\mathbb{Q}[x]$.
 - **2.4** Show that f(x) has no roots in \mathbb{Q} .
 - **2.5** Prove that f(x) is irreducible in $\mathbb{Q}[x]$.
- **Q3** 3.1 Let $R = (\mathbb{Z}/2)[x]/(x^2 + x + \bar{1}).$
 - (i) Without a proof, list all the elements of R.
 - (ii) Give addition and multiplication tables for R.
 - **3.2** Prove that there is no non-trivial homomorphism $\varphi : \mathbb{Z}[\sqrt{2}] \to \mathbb{Z}/5$, between the rings $\mathbb{Z}[\sqrt{2}]$ and $\mathbb{Z}/5$.
 - **3.3** Let

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 5 & 4 & 6 & 1 & 7 \end{pmatrix}, \text{ and } \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 5 & 7 & 4 & 6 & 3 \end{pmatrix}$$

be permutations in S_7 . Write σ and τ as products of disjoint cycles and compute $\sigma\tau$. Also compute $\sigma\tau\sigma^{-1}$ and its order as an element of S_7 .

3.4 Let $(37) \in S_7$. Find $x, y, z, w \in \{1, 2, \dots, 7\}$ such that

$$(37) = (3127)(3172)(x y z w).$$

Moreover, show that a transposition $(a b) \in S_n$, $n \ge 2$ can never be written as a product of two cycles of length three.

Q4 4.1 Let $C = \langle x \rangle$ be a cyclic group of order 48, written multiplicatively. Find the positive integers a such that there exists a surjective homomorphism φ_a : $\mathbb{Z}/48 \rightarrow C$ with

$$\varphi_a(\bar{1}) = x^a$$

Exam code

MATH2581-WE01

- **4.2** Find all generators and all subgroups of $(\mathbb{Z}/13)^{\times}$.
- **4.3** Find the centre $Z = \{g \in D_4 \mid gx = xg \; \forall x \in D_4\}$ of the dihedral group D_4 .
- **4.4** Determine the order of every element in the quotient group D_4/Z .
- Q5 5.1 Determine (up to isomorphism) all abelian groups of order 360. Show the details of your work and justify every step of the solution.
 - **5.2** Determine all the conjugacy classes in the dihedral group D_7 . Show the details of your work and justify every step of the solution.
 - **5.3** Let G be a finite group. Show that the function $f : G \to G$, $f(g) = g^{-1}$, defines a bijection from the set $X = \{g \in G \mid g^2 \neq 1\}$ to itself. Use this to prove that if G has an even number of elements, then there exists an element $x \in G$ of order 2. You may not use Cauchy's theorem.