

EXAMINATION PAPER

Examination Session: May/June

2020

Year:

Exam Code:

MATH2617-WE01

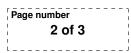
Title:

Elementary Number Theory II

Time (for guidance only):	2 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Instructions to Candidates:	Credit will be given for your answers to all questions. Questions in Section B carry ONE and a HALF times as many marks as those in Section A.
	Please start each question on a new page. Please write your CIS username at the top of each page.
	Show your working and explain your reasoning.

Revision:



SECTION A

Q1 1.1 Let $a, b \in \mathbb{N}$ such that gcd(a, b) = 1. Determine the possible values of

$$gcd(a-b, a+b).$$

You must prove that only certain values are possible and give examples of a and b for which these values are obtained.

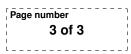
1.2 Find all $n \in \mathbb{N}$ (if any) such that $\varphi(n) = 14$. Here φ is the Euler φ -function.

Q2 2.1 Find a number $a \in \mathbb{N}$ such that $103a \equiv 1 \pmod{23}$.

2.2 Find an integer 0 < n < 23 such that if $x \in \mathbb{Z}$ is a solution to the congruence

$$103x^5 \equiv 1 \pmod{23},$$

then we must have $x \equiv n \pmod{23}$. In other words, show that if $103x^5 \equiv 1 \pmod{23}$ has a solution x, then $x \equiv n \pmod{23}$.



SECTION B

- Q3 3.1 Find the last digit of 7^{999,999}.
 - 3.2 Find the smallest positive integer solution to the system of congruences

$$x \equiv 10 \pmod{11},$$
$$x \equiv 3 \pmod{15}.$$

- **3.3** Evaluate the Legendre symbol $\left(\frac{107}{1009}\right)$. You may assume without proof that 107 and 1009 are primes.
- **Q4** Let p be a prime such that p = 2q + 1, where q is an odd prime. Let $a \in \mathbb{Z}$ such that 1 < a < p 1.
 - **4.1** Show that ord $_p(-a^2) \in \{1, 2, q, 2q\}.$
 - **4.2** Show that ord $_p(-a^2) \neq 1$.
 - **4.3** Show that $\operatorname{ord}_p(-a^2) \neq 2$. (Hint: Assuming the opposite, which two integers does $\operatorname{ord}_p(a)$ have to divide? Why is that impossible?)
 - **4.4** Show that $\operatorname{ord}_p(-a^2) \neq q$ and conclude that $-a^2$ is a primitive root modulo p.
- **Q5** Let p be a prime and let $x, a \in \mathbb{Z}$ be such that $x^2 \equiv a \pmod{p}$.
 - **5.1** Show that if $y^2 \equiv a \pmod{p^2}$, for some $y \in \mathbb{Z}$, then

$$y = \pm x + pk_{z}$$

for some $k \in \mathbb{Z}$ such that $\pm 2xk \equiv \frac{a-x^2}{p} \pmod{p}$.

- **5.2** Conversely, show that if y = x + pk, for some $k \in \mathbb{Z}$ such that $2xk \equiv \frac{a-x^2}{p} \pmod{p}$, then $y^2 \equiv a \pmod{p^2}$.
- **5.3** Assume that $p \neq 2$ and that p does not divide a. Show that there exists a solution $y \in \mathbb{Z}$ to the congruence $y^2 \equiv a \pmod{p^2}$.
- **5.4** Find a $y \in \mathbb{N}$ such that $y^2 \equiv 3 \pmod{121}$ (*Hint: Use the previous part.*)