

EXAMINATION PAPER

Examination Session: May/June

2020

Year:

Exam Code:

MATH2627-WE01

Title:

Geometric Topology II

Time (for guidance only):	2 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Instructions to Candidates:	Credit will be given for your answers to all questions. Questions in Section B carry ONE and a HALF times as many marks as those in Section A.
	Please start each question on a new page. Please write your CIS username at the top of each page.
	Show your working and explain your reasoning.

Revision:

SECTION A

- **Q1 1.1** Let U_n be the *n*-component unlink. State the values of $n \ge 1$ for which U_n is tricolorable
 - **1.2** Denote by K_1 the following oriented knot.

Using tricolorability, show that there does not exist an oriented knot K_2 for which $K_1 + K_2 = U_1$.

1.3 Calculate the Alexander-Conway polynomial of the following knot. Do not assume knowledge of Alexander-Conway polynomials for links other than unlinks.

- **Q2** Consider the unit circle S^1 in \mathbb{C} .
 - **2.1** Let $\overline{\gamma}(z): S^1 \to S^1$ represent complex conjugation; that is $\overline{\gamma}(z) = \overline{z}$ for z in S^1 . Show that the winding number $w(\overline{\gamma})$ of $\overline{\gamma}$ is -1.
 - **2.2** Given any non-zero continuous map $f: S^1 \to \mathbb{C}$, recall that we may define a map $\gamma(z): S^1 \to S^1$ by

$$\gamma(z) = \gamma_f(z) = \frac{f(z)}{|f(z)|}$$

For the following functions f determine whether this γ is well-defined and, if so, compute the winding number $w(\gamma)$. You may find it useful to recall that for any two continuous functions $\gamma: S^1 \to S^1$ and $\delta: S^1 \to S^1$ we have

$$w(\gamma\delta) = w(\gamma) + w(\delta); \qquad w(\gamma \circ \delta) = w(\gamma)w(\delta).$$

(i) $f(z) = \overline{z}(z^2 + \frac{i}{2});$ (ii) $f(z) = z + \overline{z};$ (iii) $f(z) = \overline{z}^3 - \overline{z}^2 + \frac{1}{2}\overline{z}.$

2.3 Let $\gamma_0, \gamma_1 : S^1 \to S^1$ be defined by

$$\gamma_0(z) = \frac{z^2 + \frac{1}{9}}{\left|z^2 + \frac{1}{9}\right|}; \qquad \gamma_1(z) = \frac{(1+i)z^2(\overline{z} - 2i)}{\sqrt{2} |\overline{z} - 2i|}.$$

Find a continuous map $H: S^1 \times [0,1] \to S^1$ such that $H(z,0) = \gamma_0(z)$ and $H(z,1) = \gamma_1(z)$ for all z in S^1 .

SECTION B

Q3 3.1 For $n \ge 1$, let $\begin{bmatrix} n \\ n \end{bmatrix}$ be part of a link diagram defined as follows:

Use induction to show that for $n \ge 1$

$$\left\langle \begin{array}{c} \left| \begin{array}{c} \mathbf{n} \\ \mathbf{n} \end{array} \right\rangle = A^{-n} \left\langle \right\rangle \left(\right\rangle + \sum_{k=0}^{n-1} (-1)^{n-1-k} A^{3n-2-4k} \left\langle \begin{array}{c} \bigcirc \\ \frown \end{array} \right\rangle.$$

3.2 Denote by L_n the following link. Use part **3.1** to calculate the bracket polynomial of L_n (you need not group the terms).

- **3.3** Define the X-polynomial of an oriented link diagram in terms of the bracket polynomial, and calculate the X-polynomial of L_n .
- **3.4** Calculate the Jones polynomial of L_3 .

Q4 4.1 Let K be the following knot.

- (i) Use Seifert's algorithm on K to draw a Seifert surface.
- (ii) Determine the genus of the resulting surface, and hence identify it.
- **4.2** Let *D* be a knot diagram and let *D'* be a knot diagram obtained from *D* by changing a crossing of the form \times to a crossing of the form \times .
 - (i) Briefly explain why applying Seifert's algorithm to both diagrams D and D' will give rise to surfaces of the same genus.
 - (ii) Show that changing a crossing on the standard diagram for the Trefoil leads to a diagram of the unknot. Hence, explain how one can draw a diagram of the unknot such that Seifert's algorithm produces a surface of genus 1 when applied to this diagram.
 - (iii) For every $n \ge 2$ give a diagram of the unknot such that Seifert's algorithm produces a surface of genus n when applied to this diagram.
- Q5 5.1 Determine the index of the following singularity. Justify your answer.

- 5.2 Draw a sketch of a planar vector field with exactly one singularity of index -3 and explain why it is indeed of index -3.
- **5.3** Let S be the 2-torus with one open disc removed. Draw a vector field on S which points outward along the boundary and which has only finitely many singularities. Calculate the sum of the indices of this vector field.
- **5.4** Suppose T is a compact connected orientable surface without boundary. Suppose also that there is a vector field on T with exactly three singularities, each of the same index. What are the possible values of the genus of T?
- 5.5 Does there exist a vector field on the surface of genus 3 with exactly four singularities such that two are of index 1 and two are of index -2? Justify your answer.