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Q1 1.1 Let f be a nonnegative measurable function and suppose
∫
f = 0. Prove that

f = 0 almost everywhere.

1.2 Define what it means that φ : R→ R is simple and in standard representation,
define

∫
φ for a simple function φ, and define

∫
f for a measurable function

f : R→ R≥0.

1.3 Prove that if f, g : R→ R≥0 are measurable functions with f(x) ≤ g(x) for all
x ∈ R , then

∫
f ≤

∫
g.

1.4 Let g be a bounded nonnegative measurable function. Show that for each ε > 0
there is an integrable function f such that∫

fg ≥ (‖g‖∞ − ε) ‖f‖1 .

Q2 2.1 State the Monotone Convergence Theorem. State the Lemma of Fatou.

2.2 Let fn : R → R be defined by fn := χ[−2n,−n], n ∈ N. Here, χ[−2n,−n](x) =
1 if x ∈ [−2n,−n] and χ[−2n,−n](x) = 0 otherwise. Does the assumption
of the Monotone Convergence Theorem apply to the sequence fn? Does the
conclusion of the Monotone Convergence Theorem apply to the sequence fn?
Prove your answers.

2.3 Let gn : R→ R be measurable, limn→∞gn(x) = g(x) for all x ∈ R and assume
that 0 ≤ gn(x) ≤ g(x) for all n ∈ N and all x ∈ R. Prove that
limn→∞

∫
gn =

∫
g.

Q3 3.1 Define what it means for a measurable function f : R → R to be integrable
and define

∫
f for such f .

3.2 State the Dominated Convergence Theorem.

3.3 Use the identity
∫

1
1+x2 = π and the Dominated Convergence Theorem to

evaluate the limit limn→∞
∫ n sin(x/n)

x(1+x2)
.

Q4 4.1 Define the Dirichlet kernel Dn and define the Fejer kernel Fn.

4.2 Prove that, if f : [−π, π] → R is integrable and if f is differentiable at 0 ∈
[−π, π], then

lim
n→∞

∫ π

−π
f(y)Dn(y)dy = f(0).

Q5 5.1 Define an inner product on L2([0, 2π]) and define what it means that L2([0, 2π])
is an Hilbert space.

5.2 State Parseval’s Identity.

5.3 Let {ei}i∈I be an orthonormal basis in a Hilbert space and let x be a unit vector,
i.e., ‖x‖ = 1. Show that for each k ∈ N the set {i ∈ I : |< x, ei > | ≥ 1/k} has
at most k2 elements. [Hint: Use Parseval’s Identity.]
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