

EXAMINATION PAPER

Examination Session: May/June

2020

Year:

Exam Code:

MATH3021-WE01

Title:

Differential Geometry III

Time (for guidance only):	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Instructions to Candidates:	Credit will be given for your answers to all questions. All questions carry the same marks.
	Please start each question on a new page. Please write your CIS username at the top of each page.
	Show your working and explain your reasoning.

Revision:

- **Q1** Let $\boldsymbol{\alpha} : \mathbb{R} \to \mathbb{R}^3$ be a curve defined by $\boldsymbol{\alpha} : u \to (u, \cos \varphi \sin u, -\sin \varphi \sin u)$, where $\varphi \in \mathbb{R}$ is a constant.
 - 1.1 Compute the curvature and the torsion of α .
 - **1.2** Determine for which values of the constant φ is the trace α contained in
 - (i) a straight line in \mathbb{R}^3 ,
 - (ii) a plane in \mathbb{R}^3 .
 - **1.3** Determine for which constants $c \in \mathbb{R}$ the equation $x^4 + y^4 + z^4 = c$ defines a regular surface. State explicitly all statements you use in your proofs.
 - 1.4 Let S be a surface parametrised by $\boldsymbol{x}(u,v) = (u^2, u, v^2)$. Find the coefficients of the first and second fundamental forms. Compute the principal curvatures of S.
- **Q2** Let $\boldsymbol{\alpha} : \mathbb{R} \to \mathbb{R}^2$ be a curve given by $\boldsymbol{\alpha}(u) = (u^2 + u, u^3)$.
 - 2.1 Is α smooth? regular? simple? unit speed? Justify your answers.
 - **2.2** Find all inflection points of α . Does α have any vertices?
 - **2.3** Find the evolute e(u) for the curve $\alpha(u)$. For which $u \in \mathbb{R}$ is it defined?
 - 2.4 Let γ be a curve satisfying all conditions of the 4-vertex theorem. Can γ have an odd number of vertices? Sketch a curve satisfying all conditions of the 4-vertex theorem and having exactly 12 vertices. (You do not need to write a formula).
- **Q3** Define the first fundamental form on the upper half-plane $U = \{(u, v) \in \mathbb{R}^2 \mid v > 0\}$ by

$$E(u,v) := \frac{1}{v^2}, \qquad F(u,v) := 0, \qquad G(u,v) := \frac{1}{v^2}.$$

- **3.1** Let $\alpha(x) = (0, t), 1 \le t < \infty$. Determine whether the arc length of α is finite of infinite.
- **3.2** Find the area of the domain $T = \{(u, v) \in U \mid -1 \le u \le 1, u^2 + v^2 > 1\}.$
- 3.3 Give the definition of a global isometry of two surfaces. Show that the maps

$$f_a(u, v) = (au, av)$$
 and $g_b(u, v) = (u + b, v)$

are global isometries $U \to U$ for every $a, b \in \mathbb{R}$.

3.4 Consider the set C of curves which consists of all vertical half-rays $(a, t), a \in \mathbb{R}$, t > 0 in U and all semi-circles $(r \cos \theta + e, r \sin \theta)$, where $0 \le \theta \le \pi$ and $e \in \mathbb{R}$, $r \in \mathbb{R}_+$. Show without using the Gauss-Bonnet Theorem that every triangle on U with all three vertices on the boundary $\partial U \cup \infty$ and all sides contained in the set C has the same area π .

- Q4 Let $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = (\sin z + 2)^2\}$ be a surface.
 - **4.1** Parametrise S as a surface of revolution. Write down the generating curve of S.
 - **4.2** Compute the Gauss curvature of S. Find elliptic, parabolic and flat regions on S.
 - 4.3 Is there any closed geodesic on S? Justify your answer.
 - **4.4** Give the definition of an umbilic point. Are there any umbilic points on S? Justify your answer.
- **Q5** The surface $S \subset \mathbb{R}^3$ is given by

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = z^2, y \ge 0, 0 \le z \le 1\}.$$

- 5.1 State the global Gauss-Bonnet Theorem explaining all notions which you use.
- **5.2** Find the value of $\int_{\partial S} \kappa_g ds$.
- **5.3** Find the Euler characteristic of S.
- **5.4** Verify the global Gauss-Bonnet Theorem directly for the surface S.