
Revision:

Instructions to Candidates: Credit will be given for your answers to all questions.
All questions carry the same marks.

Please start each question on a new page.
Please write your CIS username at the top of each page.

Show your working and explain your reasoning.

Models Permitted: There is no restriction on the
model of calculator which may be used.

Calculators Permitted: Yes

Materials Permitted:

Additional Material provided: Formula sheet

Time (for guidance only): 3 hours

Exam Code:

MATH3101-WE01

Title:

Continuum Mechanics III

Year:

2020

Examination Session:

May/June

EXAMINATION PAPER

ED01/2020
University of Durham Copyright



2 of 4
Page number

MATH3101-WE01
Exam code

Q1 1.1 Consider the flow u = −αxex − αyey, where α is a positive constant.
(i) Find the path of a particle initially located at x = (a, b).

(ii) Consider the material curve γt defined at t = 0 by x2 + y2 = A2 where
A ∈ R. Find the equation for γt when t > 0.

(iii) How does the area enclosed by γt change with time?

1.2 An unforced incompressible Newtonian viscous fluid of viscosity µ fills a cylin-
der of radius R, which is rotating at constant angular velocity Ω.

(i) Find the equations and boundary conditions that must be satisfied by a
solution of the form u = u(r)eθ, p = p(r).

(ii) Solve these to find smooth solutions for u(r) and p(r).

(iii) If instead the fluid were inviscid (µ = 0), what would be the possible u(r)?

Q2 In cylindrical coordinates, let us model a whirlpool of water with the steady velocity
field

u =

Ωreθ, r < a,
Ωa2

r
eθ, r > a,

where a and Ω are positive constants. The fluid is subject to a gravitational force
−gez.

2.1 Compute the vorticity ω(r) in the inner and outer regions. Is it continuous at
r = a?

2.2 Find a continuous stream function ψ(r) such that u = ∇× (ψez).

2.3 Show that u is a solution of the steady state, incompressible Euler equations
and solve for the pressure when p = p0 at r = z = 0.

2.4 If, in addition, p0 is the pressure of the air above (and on the surface of) the
water, find the curve z(r) that describes the shape of the water’s surface.
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Q3 Consider an unforced, incompressible, ideal fluid.

3.1 Write down the momentum and vorticity equations in Lagrangian form.

3.2 If Dt is a simply-connected material volume in this fluid, show that the helicity

H =

∫
V

u · ω dV obeys

dH

dt
=

∮
∂Dt

(
1

2
|u|2 − p

ρ0

)
ω · n dS.

3.3 Now suppose V contains the following configuration of three linked line vortices,
with circulations C1, C2, C3. The arrows indicate the direction of vorticity.

Assuming the line vortices to be infinitesimally thin, with ω = 0 everywhere
else in V , determine the helicity.

Q4 An organ pipe comprises a rectangular tube of square cross-section {−a < x < a,
−a < y < a} and length b. It is closed at the bottom (z = 0) and open at the
top (z = b). We consider linear sound waves inside the pipe, described by u = ∇φ
where

∂2φ

∂t2
= c20∆φ. (*)

4.1 Write down the appropriate boundary conditions for φ on all six boundaries.

4.2 By assuming a solution of the form φ(x, y, z, t) = X(x)Y (y)Z(z)e−iωt, show
that the equation (*) can be separated into three ODEs

Z ′′ = −k2
zZ, X ′′ = −k2

xX, Y ′′ = −k2
yY

and find ky as a function of kx and kz.

4.3 Hence find the possible values of ω for these standing waves.

4.4 What is the fundamental frequency
ω

2π
of the pipe?

4.5 Some organs are better modelled by a tube that is open at both ends. What
would you expect to be the fundamental frequency in that case?
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Q5 A “self-gravitating” barotropic ideal fluid feels a gravitational body force of the form
f = −∇Φ with Φ = Φ(x, t).

5.1 Write down the compressible 1D Euler equations for this fluid assuming u =
u(x, t)ex, p = p(x, t) and ρ = ρ(x, t).

5.2 If the fluid is initially at rest with constant density ρ0, constant pressure p0, and
Φ0 = 0, show that small perturbations u = u(x, t)ex, ρ(x, t), p(x, t), Φ(x, t)
satisfy the linear equations

∂ρ

∂t
= −ρ0

∂u

∂x
,

∂u

∂t
= − 1

ρ0

∂p

∂x
− ∂Φ

∂x
.

5.3 If the perturbed gravitational potential is determined from the density pertur-
bation by the Poisson equation

∂2Φ

∂x2
= 4πGρ,

with G constant, show that the system reduces to

∂2ρ

∂t2
= c20

∂2ρ

∂x2
+ 4πGρ0ρ

where c0 is the sound speed.

5.4 By trying solutions of the form ρ = exp
[
i(kx− ωt)

]
, determine the condition

for linear instability.

5.5 Give a brief physical interpretation of the result in 5.4.
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FORMULA SHEET for MATH 3101/4081 : CONTINUUM MECHANICS

Some vector identities:

∇ ·
(
fA

)
=

(
∇f

)
·A + f∇ ·A (1)

∇×
(
fA

)
=

(
∇f

)
×A + f∇×A (2)

∇×
(
∇×A

)
= ∇

(
∇ ·A

)
−∆A (3)(

A · ∇
)
A = 1

2
∇|A|2 −A×

(
∇×A

)
(4)

∇ ·
(
A×B

)
= B ·

(
∇×A

)
−A ·

(
∇×B

)
(5)

∇×
(
A×B

)
=

(
B · ∇

)
A−

(
A · ∇

)
B + A∇ ·B −B∇ ·A (6)

∇
(
A ·B

)
=

(
A · ∇

)
B +

(
B · ∇

)
A + A×

(
∇×B

)
+ B ×

(
∇×A

)
(7)

In cylindrical coordinates (r, θ, z):

∇f = grad f = er∂rf +
eθ
r
∂θf + ez∂zf (8)

∇·A = divA =
1

r
∂r(rAr) +

1

r
∂θAθ + ∂zAz (9)

∇×A = rotA =
(1

r
∂θAz − ∂zAθ

)
er +

(
∂zAr − ∂rAz

)
eθ +

1

r

(
∂r(rAθ)− ∂θAr

)
ez (10)

∆f =
1

r
∂r
(
r ∂rf

)
+

1

r2
∂θθf + ∂zzf (11)

∆A =
(

∆Ar −
1

r2
Ar −

2

r2
∂θAθ

)
er +

(
∆Aθ +

2

r2
∂θAr −

1

r2
Aθ

)
eθ + ez∆Az (12)(

B ·∇
)
A = er

(
B ·∇Ar −

BθAθ
r

)
+ eθ

(
B ·∇Aθ +

BθAr
r

)
+ ezB ·∇Az (13)

In spherical coordinates (r, θ, φ):

∇f = grad f = er∂rf +
eθ
r
∂θf +

eφ
r sin θ

∂φf (14)

∇·A = divA =
1

r2
∂r
(
r2Ar

)
+

1

r sin θ
∂θ
(
Aθ sin θ

)
+

1

r sin θ
∂φAφ (15)

∇×A = rotA =
er

r sin θ

(
∂θ(Aφ sin θ)− ∂φAθ

)
+

eθ
r

( 1

sin θ
∂φAr − ∂r(rAφ)

)
+

eφ
r

(
∂r(rAθ)− ∂θAr

)
(16)

∆f =
1

r
∂rr(rf) +

1

r2 sin θ
∂θ
(
sin θ∂θf

)
+

1

r2 sin2 θ
∂φφf (17)

∆A =
(

∆Ar −
2

r2
Ar −

2

r2 sin θ

[
∂θ(sin θAθ) + ∂φAφ

])
er

+
(

∆Aθ +
2

r2
∂θAr −

Aθ
r2 sin2 θ

− 2 cos θ

r2 sin2 θ
∂φAφ

)
eθ

+
(

∆Aφ +
2

r2 sin θ
∂φAr +

2 cos θ

r2 sin2 θ
∂φAθ −

Aφ
r2 sin2 θ

)
eφ (18)(

B ·∇
)
A = er

(
B ·∇Ar −

BθAθ
r
− BφAφ

r

)
+ eθ

(
B ·∇Aθ −

BφAφ
r

cot θ +
BθAr
r

)
+ eφ

(
B ·∇Aφ +

BφAr
r

+
BφAθ
r

cot θ
)

(19)

Bessel functions u(r) = Jn(r) and u(r) = Yn(r) are solutions to the ODE

r2u′′ + ru′ +
(
r2 − n2

)
u = 0. (20)

Both Jn(r) and Yn(r)→ 0 as r →∞; Jn(0) = δn0, and |Yn(r)| → ∞ as r → 0.
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