

EXAMINATION PAPER

Examination Session: May/June

2020

Year:

Exam Code:

MATH3101-WE01

Title:

Continuum Mechanics III

Time (for guidance only):	3 hours						
Additional Material provided:	Formula shee	et					
Materials Permitted:							
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.					

Instructions to Candidates:	Credit will be given for your answers to all questions. All questions carry the same marks.						
	Please start each question on a new page. Please write your CIS username at the top of each page.						
	Show your working and explain your reasoning.						

Revision:

- **Q1** 1.1 Consider the flow $\boldsymbol{u} = -\alpha x \boldsymbol{e}_x \alpha y \boldsymbol{e}_y$, where α is a positive constant.
 - (i) Find the path of a particle initially located at $\boldsymbol{x} = (a, b)$.
 - (ii) Consider the material curve γ_t defined at t = 0 by $x^2 + y^2 = A^2$ where $A \in \mathbb{R}$. Find the equation for γ_t when t > 0.
 - (iii) How does the area enclosed by γ_t change with time?
 - **1.2** An unforced incompressible Newtonian viscous fluid of viscosity μ fills a cylinder of radius R, which is rotating at constant angular velocity Ω .
 - (i) Find the equations and boundary conditions that must be satisfied by a solution of the form $\boldsymbol{u} = u(r)\boldsymbol{e}_{\theta}, \ p = p(r).$
 - (ii) Solve these to find smooth solutions for u(r) and p(r).
 - (iii) If instead the fluid were inviscid $(\mu = 0)$, what would be the possible u(r)?
- $\mathbf{Q2}$ In cylindrical coordinates, let us model a whirlpool of water with the steady velocity field

$$\boldsymbol{u} = \begin{cases} \Omega r \boldsymbol{e}_{\theta}, & r < a, \\ \frac{\Omega a^2}{r} \boldsymbol{e}_{\theta}, & r > a, \end{cases}$$

where a and Ω are positive constants. The fluid is subject to a gravitational force $-ge_z$.

- **2.1** Compute the vorticity $\boldsymbol{\omega}(r)$ in the inner and outer regions. Is it continuous at r = a?
- **2.2** Find a *continuous* stream function $\psi(r)$ such that $\boldsymbol{u} = \nabla \times (\psi \boldsymbol{e}_z)$.
- **2.3** Show that \boldsymbol{u} is a solution of the steady state, incompressible Euler equations and solve for the pressure when $p = p_0$ at r = z = 0.
- **2.4** If, in addition, p_0 is the pressure of the air above (and on the surface of) the water, find the curve z(r) that describes the shape of the water's surface.

Page number																
L						9	۰.	_	£	л						
Ľ						J		υ	<u>ا</u>	4						
Ľ																
L	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	

- Q3 Consider an unforced, incompressible, ideal fluid.
 - 3.1 Write down the momentum and vorticity equations in Lagrangian form.
 - **3.2** If D_t is a simply-connected material volume in this fluid, show that the helicity $H = \int_V \boldsymbol{u} \cdot \boldsymbol{\omega} \, \mathrm{d}V$ obeys

$$\frac{\mathrm{d}H}{\mathrm{d}t} = \oint_{\partial D_t} \left(\frac{1}{2} |\boldsymbol{u}|^2 - \frac{p}{\rho_0} \right) \boldsymbol{\omega} \cdot \boldsymbol{n} \, \mathrm{d}S.$$

3.3 Now suppose V contains the following configuration of three linked line vortices, with circulations C_1 , C_2 , C_3 . The arrows indicate the direction of vorticity.

Assuming the line vortices to be infinitesimally thin, with $\boldsymbol{\omega} = \mathbf{0}$ everywhere else in V, determine the helicity.

Q4 An organ pipe comprises a rectangular tube of square cross-section $\{-a < x < a, -a < y < a\}$ and length b. It is closed at the bottom (z = 0) and open at the top (z = b). We consider linear sound waves inside the pipe, described by $\boldsymbol{u} = \nabla \phi$ where

$$\frac{\partial^2 \phi}{\partial t^2} = c_0^2 \Delta \phi. \tag{(*)}$$

- 4.1 Write down the appropriate boundary conditions for ϕ on all six boundaries.
- **4.2** By assuming a solution of the form $\phi(x, y, z, t) = X(x)Y(y)Z(z)e^{-i\omega t}$, show that the equation (*) can be separated into three ODEs

$$Z'' = -k_z^2 Z, \qquad X'' = -k_x^2 X, \qquad Y'' = -k_y^2 Y$$

and find k_y as a function of k_x and k_z .

- **4.3** Hence find the possible values of ω for these standing waves.
- **4.4** What is the fundamental frequency $\frac{\omega}{2\pi}$ of the pipe?
- 4.5 Some organs are better modelled by a tube that is open at both ends. What would you expect to be the fundamental frequency in that case?

- Q5 A "self-gravitating" barotropic ideal fluid feels a gravitational body force of the form $f = -\nabla \Phi$ with $\Phi = \Phi(x, t)$.
 - **5.1** Write down the compressible 1D Euler equations for this fluid assuming $\boldsymbol{u} = u(x,t)\boldsymbol{e}_x$, p = p(x,t) and $\rho = \rho(x,t)$.
 - **5.2** If the fluid is initially at rest with constant density ρ_0 , constant pressure p_0 , and $\Phi_0 = 0$, show that small perturbations $\boldsymbol{u} = u(x,t)\boldsymbol{e}_x$, $\rho(x,t)$, p(x,t), $\Phi(x,t)$ satisfy the linear equations

$$\begin{aligned} \frac{\partial \rho}{\partial t} &= -\rho_0 \frac{\partial u}{\partial x},\\ \frac{\partial u}{\partial t} &= -\frac{1}{\rho_0} \frac{\partial p}{\partial x} - \frac{\partial \Phi}{\partial x}. \end{aligned}$$

5.3 If the perturbed gravitational potential is determined from the density perturbation by the Poisson equation

$$\frac{\partial^2 \Phi}{\partial x^2} = 4\pi G\rho,$$

with G constant, show that the system reduces to

$$\frac{\partial^2 \rho}{\partial t^2} = c_0^2 \frac{\partial^2 \rho}{\partial x^2} + 4\pi G \rho_0 \rho$$

where c_0 is the sound speed.

- **5.4** By trying solutions of the form $\rho = \exp[i(kx \omega t)]$, determine the condition for linear instability.
- 5.5 Give a brief physical interpretation of the result in 5.4.

FORMULA SHEET for MATH 3101/4081 : CONTINUUM MECHANICS

Some vector identities:

$$\nabla \cdot (f\mathbf{A}) = (\nabla f) \cdot \mathbf{A} + f \nabla \cdot \mathbf{A}$$
⁽¹⁾

$$\nabla \times (f\mathbf{A}) = (\nabla f) \times \mathbf{A} + f\nabla \times \mathbf{A}$$
⁽²⁾

$$\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \Delta \mathbf{A}$$
(3)

$$(\boldsymbol{A}\cdot\nabla)\boldsymbol{A} = \frac{1}{2}\nabla|\boldsymbol{A}|^2 - \boldsymbol{A}\times(\nabla\times\boldsymbol{A})$$
 (4)

$$\nabla \cdot (\boldsymbol{A} \times \boldsymbol{B}) = \boldsymbol{B} \cdot (\nabla \times \boldsymbol{A}) - \boldsymbol{A} \cdot (\nabla \times \boldsymbol{B})$$
(5)

$$\nabla \times (\boldsymbol{A} \times \boldsymbol{B}) = (\boldsymbol{B} \cdot \nabla) \boldsymbol{A} - (\boldsymbol{A} \cdot \nabla) \boldsymbol{B} + \boldsymbol{A} \nabla \cdot \boldsymbol{B} - \boldsymbol{B} \nabla \cdot \boldsymbol{A}$$
(6)

$$\nabla (\boldsymbol{A} \cdot \boldsymbol{B}) = (\boldsymbol{A} \cdot \nabla) \boldsymbol{B} + (\boldsymbol{B} \cdot \nabla) \boldsymbol{A} + \boldsymbol{A} \times (\nabla \times \boldsymbol{B}) + \boldsymbol{B} \times (\nabla \times \boldsymbol{A})$$
(7)

In cylindrical coordinates (r, θ, z) :

$$\nabla f = \operatorname{grad} f = \boldsymbol{e}_r \partial_r f + \frac{\boldsymbol{e}_\theta}{r} \partial_\theta f + \boldsymbol{e}_z \partial_z f \tag{8}$$

$$\nabla \cdot \boldsymbol{A} = \operatorname{div} \boldsymbol{A} = \frac{1}{r} \partial_r (rA_r) + \frac{1}{r} \partial_\theta A_\theta + \partial_z A_z \tag{9}$$

$$\nabla \times \boldsymbol{A} = \operatorname{rot} \boldsymbol{A} = \left(\frac{1}{r}\partial_{\theta}A_{z} - \partial_{z}A_{\theta}\right)\boldsymbol{e}_{r} + \left(\partial_{z}A_{r} - \partial_{r}A_{z}\right)\boldsymbol{e}_{\theta} + \frac{1}{r}\left(\partial_{r}(rA_{\theta}) - \partial_{\theta}A_{r}\right)\boldsymbol{e}_{z} \quad (10)$$

$$\Delta f = \frac{1}{r} \partial_r \left(r \, \partial_r f \right) + \frac{1}{r^2} \partial_{\theta\theta} f + \partial_{zz} f \tag{11}$$

$$\Delta \boldsymbol{A} = \left(\Delta A_r - \frac{1}{r^2}A_r - \frac{2}{r^2}\partial_{\theta}A_{\theta}\right)\boldsymbol{e}_r + \left(\Delta A_{\theta} + \frac{2}{r^2}\partial_{\theta}A_r - \frac{1}{r^2}A_{\theta}\right)\boldsymbol{e}_{\theta} + \boldsymbol{e}_z\Delta A_z \tag{12}$$

$$\left(\boldsymbol{B}\cdot\nabla\right)\boldsymbol{A} = \boldsymbol{e}_r\left(\boldsymbol{B}\cdot\nabla A_r - \frac{B_{\theta}A_{\theta}}{r}\right) + \boldsymbol{e}_{\theta}\left(\boldsymbol{B}\cdot\nabla A_{\theta} + \frac{B_{\theta}A_r}{r}\right) + \boldsymbol{e}_z\,\boldsymbol{B}\cdot\nabla A_z \tag{13}$$

In spherical coordinates (r, θ, ϕ) :

$$\nabla f = \operatorname{grad} f = \boldsymbol{e}_r \partial_r f + \frac{\boldsymbol{e}_\theta}{r} \partial_\theta f + \frac{\boldsymbol{e}_\phi}{r \sin \theta} \partial_\phi f$$
(14)

$$\nabla \cdot \boldsymbol{A} = \operatorname{div} \boldsymbol{A} = \frac{1}{r^2} \partial_r (r^2 A_r) + \frac{1}{r \sin \theta} \partial_\theta (A_\theta \sin \theta) + \frac{1}{r \sin \theta} \partial_\phi A_\phi$$
(15)

$$\nabla \times \boldsymbol{A} = \operatorname{rot} \boldsymbol{A} = \frac{\boldsymbol{e}_r}{r \sin \theta} \left(\partial_{\theta} (A_{\phi} \sin \theta) - \partial_{\phi} A_{\theta} \right) + \frac{\boldsymbol{e}_{\theta}}{r} \left(\frac{1}{\sin \theta} \partial_{\phi} A_r - \partial_r (r A_{\phi}) \right) \\ + \frac{\boldsymbol{e}_{\phi}}{r} \left(\partial_r (r A_{\theta}) - \partial_{\theta} A_r \right)$$
(16)

$$\Delta f = \frac{1}{r} \partial_{rr} (rf) + \frac{1}{r^2 \sin \theta} \partial_{\theta} (\sin \theta \partial_{\theta} f) + \frac{1}{r^2 \sin^2 \theta} \partial_{\phi\phi} f \tag{17}$$

$$\Delta \boldsymbol{A} = \left(\Delta A_r - \frac{2}{r^2}A_r - \frac{2}{r^2\sin\theta}\left[\partial_{\theta}(\sin\theta A_{\theta}) + \partial_{\phi}A_{\phi}\right]\right)\boldsymbol{e}_r + \left(\Delta A_{\theta} + \frac{2}{r^2}\partial_{\theta}A_r - \frac{A_{\theta}}{r^2\sin^2\theta} - \frac{2\cos\theta}{r^2\sin^2\theta}\partial_{\phi}A_{\phi}\right)\boldsymbol{e}_{\theta} + \left(\Delta A_{\phi} + \frac{2}{r^2\sin\theta}\partial_{\phi}A_r + \frac{2\cos\theta}{r^2\sin^2\theta}\partial_{\phi}A_{\theta} - \frac{A_{\phi}}{r^2\sin^2\theta}\right)\boldsymbol{e}_{\phi}$$

$$(18)$$

$$(\boldsymbol{B} \cdot \nabla) \boldsymbol{A} = \boldsymbol{e}_r \left(\boldsymbol{B} \cdot \nabla A_r - \frac{B_{\theta} A_{\theta}}{r} - \frac{B_{\phi} A_{\phi}}{r} \right) + \boldsymbol{e}_{\theta} \left(\boldsymbol{B} \cdot \nabla A_{\theta} - \frac{B_{\phi} A_{\phi}}{r} \cot \theta + \frac{B_{\theta} A_r}{r} \right) + \boldsymbol{e}_{\phi} \left(\boldsymbol{B} \cdot \nabla A_{\phi} + \frac{B_{\phi} A_r}{r} + \frac{B_{\phi} A_{\theta}}{r} \cot \theta \right)$$
(19)

<u>Bessel functions</u> $u(r) = J_n(r)$ and $u(r) = Y_n(r)$ are solutions to the ODE

$$r^{2}u'' + ru' + (r^{2} - n^{2})u = 0.$$
 (20)

Both $J_n(r)$ and $Y_n(r) \to 0$ as $r \to \infty$; $J_n(0) = \delta_{n0}$, and $|Y_n(r)| \to \infty$ as $r \to 0$.