

EXAMINATION PAPER

Examination Session: May/June

2020

Year:

Exam Code:

MATH3141-WE01

Title:

Operations Research III

Time (for guidance only):	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Instructions to Candidates:	Credit will be given for your answers to all questions. All questions carry the same marks.
	Please start each question on a new page. Please write your CIS username at the top of each page.
	Show your working and explain your reasoning.

Revision:

Q1 1.1 Solve the following linear program by using the two phase method, and state all feasible values of x_1 , x_2 , and x_3 for which the optimal value is attained.

- 1.2 A generous member of the public has $\pounds 17$ to donate to charity, and has identified three possible charities that support the same cause.
 - Charity 1 accepts donations in multiples of £8. For every £8 donation, £5.50 ends up going to the cause.
 - Charity 2 accepts donations in multiples of £4. The first £4 donated results in £2 going to the cause, due to a one-off administration fee. For every further £4 donated, £3 ends up going to the cause.
 - Charity 3 accepts donations in multiples of £3. For every £3 donation, £2 ends up going to the cause.

Formulate the above as a dynamic programming problem, and solve it, to determine how the $\pounds 17$ should be spent so that the maximum amount of money ends up going to the cause.

 ${\bf Q2}$ Consider a case where some one has solved the following linear programming problem:

$$\max 3x_1 + 2x_2 + 3x_3 + 3x_4 \tag{1a}$$

subject to
$$4x_1 + x_2 + x_3 + x_4 \le 3$$
 (1b)

$$x_1 + x_2 + 2x_3 + 3x_4 \le 4 \tag{1c}$$

$$3x_1 + 2x_2 + 2x_3 + 3x_4 \le 10 \tag{1d}$$

and subject to all $x_i \ge 0$ for $i \in \{1, 2, 3, 4\}$. The initial simplex table for this problem is

T_0	x_1	x_2	x_3	x_4	s_1	s_2	s_3		
z	-3	-2	-3	-3	0	0	0	0	
s_1	4	1	1	1	1	0	0	3	(2)
s_2	1	1	2	3	0	1	0	4	
s_3	3	2	2	3	0	0	1	10	

and the final simplex table is

T_*	x_1	x_2	x_3	x_4	s_1	s_2	s_3	
z	2	0	0	1	1	1	0	7
x_2	7	1	0	-1	2	-1	0	2
					-1			
s_3	-5	0	0	1	-2	0	1	4

Now consider a similar linear programming problem, with modifications as indicated in **bold**:

$$\max 3x_1 + 2x_2 + 3x_3 + 3x_4 + 4x_5 \tag{4a}$$

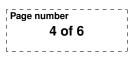
subject to
$$4x_1 + x_2 + x_3 + x_4 + \alpha x_5 \le 3 + \alpha$$
 (4b)

$$x_1 + x_2 + 2x_3 + 3x_4 + \alpha x_5 \le 4 + \alpha \tag{4c}$$

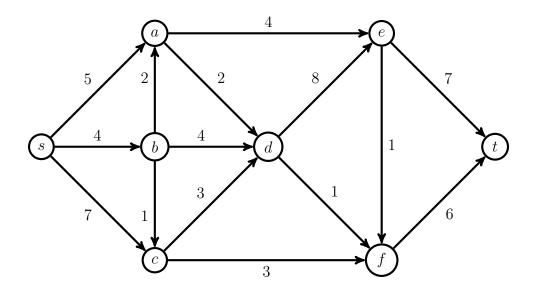
$$3x_1 + 2x_2 + 2x_3 + 3x_4 + \alpha x_5 \le 10 + \alpha$$
 (4d)

subject to all $x_i \ge 0$ for $i \in \{1, 2, 3, 4, 5\}$. Here, α is an arbitrary fixed value in \mathbb{R} . For this modified problem, *use post-optimal analysis* to answer all of the following questions:

- **2.1** For what values of $\alpha \in \mathbb{R}$ does the basis $\{x_2, x_3, s_3\}$ give a basic feasible solution?
- **2.2** For what values of $\alpha \in \mathbb{R}$ does the basis $\{x_2, x_3, s_3\}$ give an optimal basic feasible solution?
- **2.3** In those cases where the basis $\{x_2, x_3, s_3\}$ gives an optimal basic feasible solution, what is the optimal value of the objective function as a function of α ?
- **2.4** Find the optimal solution of the modified problem for $\alpha = 1$.



 ${\bf Q3}$ Consider a transportation system that can be represented by the following flow network, with capacities as labelled:



- **3.1** Apply the Ford-Fulkerson algorithm to find the maximum flow from the source s to the terminus t.
- **3.2** Find a cut separating s and t with minimal capacity.
- **3.3** Identify one arc that provides an opportunity for decreasing the maximal flow, and provide a theoretical argument as to why your chosen arc provides this opportunity. You may use, without proof, any theorems proved in the lectures, as long as you state them clearly.
- **3.4** Decrease the capacity of the arc that you just identified in question **3.3** by 1, and find the new maximal flow as well as a new cut between s and t with minimal capacity.



Q4 4.1 A stochastic optimization problem can be divided into N stages, with possible states $s \in S_n$ and actions $x \in A_n$ at stage $n \leq N$. Let S_{N+1} denote the final set of states. The probability of going to state $j \in S_{n+1}$ from state $i \in S_n$, when taking action $x \in A_n$ at stage n, is denoted by $P_n(i, j; x)$.

Write down the backwards induction algorithm for stochastic dynamic programming, with the aim of maximizing the probability of an event $F \subset S_{N+1}$. Define carefully any notation you introduce.

4.2 An investment banker has £1000 and has identified two possible investment schemes. Each accepts investments in multiples of £1000 at the beginning of the year and provides returns at the end of the same year. Scheme A provides a return of £2000 with probability p, and £0 with probability (1-p). Scheme B provides a return of £2000 with probability q, and £1000 with probability (1-q).

	annual return on $x \times \pounds 1000$ investment	probability
Α	£0	1-p
	$x \times \pounds 2000$	p
В	$x \times \pounds 1000$	1-q
	$x \times \pounds2000$	q

Assume that

The banker can make a *single* investment at the beginning of each year, in any multiple of £1000 up to the amount they have at the time. Use the algorithm from question **4.1** to determine the optimal policy for maximizing the probability that at the end of the third year, the banker has at least £4000. How does this change if the banker wants to maximize the probability of having at least £8000? Q5 A baker produces a batch of bread each morning. The bread is either good or bad. If the bread is good, the baker will sell all of it and make $\pounds 60$ that day. If the bread is bad the baker will have to sell it at a heavily discounted price, and will only make $\pounds 10$.

Each morning, the baker must decide whether to use the same recipe as the previous day, or try a new recipe. It costs the baker $\pounds 10$ to try a new recipe.

When sticking with the same recipe, the transition probabilities from one day to the next are given by:

	bad	good
bad	0.9	0.1
good	0.1	0.9

When changing recipe they are given by:

	bad	good
bad	0.6	0.4
good	0.6	0.4

Calculate

r(good, change); r(good, stick); r(bad, change) and r(bad, stick)

where $r(\alpha, \beta)$ is the expected \pounds profit in a day when action β is taken, and the previous day's batch was of quality α .

The baker's current policy is to always stick to the same recipe, but they would like to maximize their expected long-run average reward. Perform two steps of the policy improvement algorithm for this goal. What is the resulting policy? How do you know that this is the optimal policy?