

EXAMINATION PAPER

Examination Session: May/June

2020

Year:

Exam Code:

MATH3281-WE01

Title:

Topology III

Time (for guidance only):	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Instructions to Candidates:	Credit will be given for your answers to all questions. All questions carry the same marks.		
	Please start each question on a new page. Please write your CIS username at the top of each page.		
	Show your working and explain your reasoning.		

Revision:

The following conventions hold in this paper

- $\bullet \ \mathbbmsp{Z}$ denotes the additive group of all integer numbers with the discrete topology.
- \mathbb{R} denotes the space of all real numbers with the standard topology.
- \mathbb{C} denotes the space of all complex numbers with the standard topology.
- \mathbb{R}^n denotes the real *n*-dimensional space with the standard topology.

Q1 1.1 Define $d: \mathbb{R} \times \mathbb{R} \to [0, \infty)$ by

$$d(x,y) = \begin{cases} |x| + |y| & x \neq y \\ 0 & x = y \end{cases}.$$

Show that d is a metric on \mathbb{R} , and decide whether the topology induced by d agrees with the standard topology on \mathbb{R} .

- **1.2** Let $X = \{1, 2, 3\}$. Decide which of the following topologies on X are connected. Justify your statements.
 - (i) $\tau_1 = \{\emptyset, \{1, 2\}, \{1, 2, 3\}\}.$
 - (ii) $\tau_2 = \{\emptyset, \{2\}, \{1,2\}, \{2,3\}, \{1,2,3\}\}.$
 - (iii) $\tau_3 = \{\emptyset, \{1, 2\}, \{3\}, \{1, 2, 3\}\}.$

You can assume that these are indeed topologies.

- **1.3** Let A and B be finite one-dimensional simplicial complexes. Explain how to make $A \times B$ a two-dimensional simplicial complex. Use this to derive a formula relating the Euler characteristic of A, B and $A \times B$.
- 1.4 State, without proof, the Euler characteristic of S^1 . Use your formula in (1.3) to compute the Euler characteristic of the torus.
- **1.5** Show that a finite tree is a contractible space. You may assume without proof that every finite tree with at least two vertices has a *free vertex*, i.e. a vertex that belongs to a single edge.

Page number 3 of 4

Q2 Let $\mathbb{N} = \{n \in \mathbb{Z} \mid n \ge 1\}$. For $n \in \mathbb{N}$ define

$$X_n = \left\{ (x, y) \in \mathbb{R}^2 \ \left| \left(\frac{1}{n} - x\right)^2 + y^2 = \left(\frac{1}{n}\right)^2 \right\}, \\ Y_n = \left\{ (x, y) \in \mathbb{R}^2 \ \left| \left(\frac{1}{n} - x\right)^2 + y^2 \le \left(\frac{1}{n}\right)^2 \right\}, \right.$$

and

$$Z_n = X_1 \cup \dots \cup X_n \cup Y_{n+1}.$$

- **2.1** Show that each Z_n is connected and compact. Clearly state any results from the lectures that you use.
- 2.2 Let

$$X = \bigcup_{n=1}^{\infty} X_n$$
 and $Z = \bigcap_{n=1}^{\infty} Z_n$.

Show that X = Z, and that X is connected and compact. Again state any results from the lectures that you use.

2.3 Let

$$W = \{ (x, y, n) \in \mathbb{R}^3 \, | \, (x, y) \in X_1, n \in \mathbb{N} \},\$$

and let V be the quotient space W/\sim , where \sim is the equivalence relation on W given by

(i) $(x, y, n) \sim (x, y, n)$ for all $(x, y, n) \in W$, and

(ii) $(0,0,n) \sim (0,0,m)$ for all $n, m \in \mathbb{N}$.

Show that V is connected and construct a bijective map $f: V \to X$. Justify why f is continuous.

2.4 Decide whether your f in (2.3) is a homeomorphism.

- **Q3 3.1** State the definition of a topological group G, and the action of a topological group G on a topological space X.
 - 3.2 Recall that

$$S^1 = \{ z \in \mathbb{C} \mid z\bar{z} = 1 \}$$

Exam code

MATH3281-WE01

with complex multiplication is a topological group, where \bar{z} denotes complex conjugation. Show that S^1 acts on

$$S^{3} = \{(z_{1}, z_{2}) \in \mathbb{C}^{2} \mid |z_{1}|^{2} + |z_{2}|^{2} = 1\}$$

via

$$z \cdot (z_1, z_2) = (zz_1, \overline{z}z_2)$$

for $z \in S^1$ and $(z_1, z_2) \in S^3$.

3.3 Let $F: S^3 \to \mathbb{C} \times \mathbb{R}$ be given by

$$F(z_1, z_2) = (2z_1z_2, |z_1|^2 - |z_2|^2).$$

Show that the image

$$F(S^3) = S^2 = \{(z,t) \in \mathbb{C} \times \mathbb{R} \,|\, |z|^2 + t^2 = 1\},\$$

and that F induces a well defined map $f: S^3/S^1 \to S^2$ which is a homeomorphism.

- **Q4** 4.1 Let X and Y be topological spaces. State the definition of a homotopy equivalence between X and Y. Let p be a point in X. State the definition of the fundamental group $\pi_1(X, p)$.
 - **4.2** Let $X, Y \subset \mathbb{R}^3$ be two solid tori intersecting at exactly one point $p \in X \cap Y$ and consider their union $X \cup Y \subset \mathbb{R}^3$. Compute $\pi_1(X \cup Y, p)$. Justify your conclusions stating all the necessary results from the lectures without proof. You may use without proof the fundamental group of the circle.
 - **4.3** Let X be a path connected topological space and let p_1, p_2 be two points in X. Show that $\pi_1(X, p_1)$ is isomorphic to $\pi_1(X, p_2)$.
- **Q5** 5.1 Let M, N be two compact surfaces without boundary. State the definition of the connected sum M # N of M and N.
 - 5.2 Show that the Euler characteristic of the two-dimensional sphere is 2.
 - **5.3** Let M be a connected compact surface without boundary. Show that, if M is orientable, then $\chi(M) = 2 2g$, where g is the number of torus summands in the connected sum decomposition of M given by the classification theorem for closed connected surfaces. Justify your conclusions stating all the necessary results from the lectures without proof.