

EXAMINATION PAPER

Examination Session: May/June

2020

Year:

Exam Code:

MATH3391-WE01

Title:

Quantum Information III

Time (for guidance only):	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Instructions to Candidates:	Credit will be given for your answers to all questions. All questions carry the same marks.
	Please start each question on a new page. Please write your CIS username at the top of each page.
	Show your working and explain your reasoning.

Revision:

Q1 1.1 The density matrix ρ for a single qubit can be described in terms of the Bloch sphere as

$$\rho = \frac{1}{2} \left(I + \mathbf{r} \cdot \boldsymbol{\sigma} \right)$$

Exam code

MATH3391-WE01

where the Bloch vector ${\bf r}$ is a position vector in three dimensions, I is the identity matrix and

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

- (i) Given two density matrices ρ_1 and ρ_2 with corresponding Bloch vectors \mathbf{r}_1 and \mathbf{r}_2 , compute the trace Tr $(\rho_1 \rho_2)$ in terms of the two Bloch vectors.
- (ii) What does it mean geometrically (in terms of vectors in the Bloch sphere) that the commutator of the two density matrices ρ_1 and ρ_2 vanishes, i.e. $[\rho_1, \rho_2] = \rho_1 \rho_2 \rho_2 \rho_1 = 0$?
- 1.2 The operator

$$M = \frac{1}{2} \left(I + X_0 X_1 + Y_0 Y_1 + Z_0 Z_1 \right)$$

acts on 2 qubits, where X_i , Y_i and Z_i represent the Pauli operators acting on qubit i.

- (i) Calculate the result of M acting on each of the computational basis states $|q_1q_0\rangle$.
- (ii) What is the action of M on an arbitrary separable 2-qubit state $|\psi\rangle |\phi\rangle$?
- (iii) Show that $M^2 = I$.

- **Q2** Consider a bipartite system where Alice has two qubits which we will label as system AB, and Charlie has one qubit which we label as system C.
 - **2.1** If the system is in a separable pure state, write an expression for the most general form of the state and hence give an expression for the density operator $\hat{\rho}$. Calculate the reduced density operator of system AB, $\hat{\rho}_{AB} \equiv \text{Tr}_C(\hat{\rho})$ and evaluate $\text{Tr}(\hat{\rho}_{AB})$ and $\text{Tr}(\hat{\rho}_{AB}^2)$.
 - **2.2** For each of the following states

$$|\Psi\rangle = \frac{1}{\sqrt{3}} (|100\rangle + |010\rangle + |001\rangle)$$

$$|\Phi\rangle = \frac{1}{\sqrt{2}} (|000\rangle + |111\rangle)$$

calculate the reduced density operator in system AB, and give an interpretation as an ensemble of orthonormal pure states.

Give an example of an observable \hat{M} Charlie could measure which would result in these states in system AB with the same probabilities as in the ensembles you found.

- **2.3** Suppose Charlie measures the observable $\hat{N} = |0\rangle \langle 1| + |1\rangle \langle 0|$. For each of the initial states $|\Psi\rangle$ and $|\Phi\rangle$, what are the possible final states in system AB, and the probabilities for each outcome?
- **2.4** If Alice sends her second qubit to Bob, we can consider the system AB as a bipartite system where Alice has one qubit and Bob the other.

For each of the states $|\Psi\rangle$ and $|\Phi\rangle$, explain whether or not it is possible for Charlie to make a local measurement so that with probability 1 the resulting state in system AB:

- is entangled.
- is separable.

- Exam code MATH3391-WE01
- **Q3** Consider a single qubit Hilbert space with orthonormal basis states $|0\rangle$ and $|1\rangle$ and define

$$\left|\Phi\right\rangle = \frac{1}{\sqrt{2}} \left(\left|0\right\rangle + e^{i\phi}\left|1\right\rangle\right) \,,$$

with $\phi \in [0, 2\pi]$.

3.1 Compute the corresponding density matrix ρ using the Bloch representation

$$\rho = \frac{1}{2} \left(I + \mathbf{r} \cdot \boldsymbol{\sigma} \right)$$

Describe geometrically, i.e. using the Bloch sphere, the location of the corresponding Bloch vector.

- **3.2** Compute $U(\alpha) = e^{-i\alpha\sigma_3}$ and show that it is a unitary operator for $\alpha \in \mathbb{R}$.
- **3.3** Find the Bloch vector for the density matrix $\rho' = U(\alpha)\rho U(\alpha)^{\dagger}$ for ρ computed in part (a). Describe geometrically, i.e. using the Bloch sphere, your results.
- 3.4 Consider now two particular states

$$|\pm\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle \pm |1\rangle\right) \,,$$

corresponding to $\phi = 0$ and $\phi = \pi$ respectively, and denote with ρ_{\pm} the associated density matrices in Bloch representation. Use the geometric interpretation derived in point (c) to deduce the Bloch vectors for the evolved density matrices $\rho'_{\pm} = U(\frac{\pi}{4})\rho_{\pm}U(\frac{\pi}{4})^{\dagger}$.

3.5 Suppose Alice and Bob each have one qubit of a bipartite system in state

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(|+\rangle \otimes |-\rangle + |-\rangle \otimes |+\rangle \right) \,.$$

Alice and Bob decide to evolve their systems with local unitary operators. Alice implements $U(\frac{\pi}{4})$ while Bob uses σ_1 . Does it matter who evolves first? What is the state $|\chi\rangle$ of the system after these evolutions? If now Alice measures $Y = \sigma_2$ on the evolved state $|\chi\rangle$ what are the possible values, the corresponding probabilities, and corresponding final states?

Q4 Consider the Quantum Fourier Transform, defined as the linear operator U_{FT} acting on an *n*-qubit Hilbert space, whose action on orthonormal (computational) basis states $|x\rangle$, $x \in \{0, 1, ..., 2^n - 1\}$ is

$$U_{FT}|x\rangle = \frac{1}{2^{n/2}} \sum_{y=0}^{2^{n-1}} e^{2\pi i x y/N} |y\rangle ,$$

where $N = 2^n$.

- **4.1** Using the definition above, show that the states $U_{FT}|x\rangle$ are orthonormal. What does this say about the operator U_{FT} ?
- **4.2** Consider a 3-qubit system, and consider the unitary transform $U_{FT}^{\dagger}S_0Z_1U_{FT}$, represented by the quantum circuit below.

Show that this circuit implements the operation $x \to x + 2 \mod 8$ for input basis states $|x\rangle$.

Hint: Write the computational basis states in the output of the Quantum Fourier Transform in terms of their bits, i.e. $y = 4y_2 + 2y_1 + y_0$ to find the action on each qubit.

4.3 Suppose we want to implement the operation $x \to x + w \mod 8$ for some integer w using a unitary transformation

 $U_{FT}^{\dagger}U_0U_1U_2U_{FT}$

where the U_0 , U_1 , U_2 are single-qubit unitary operators acting on qubits 0, 1, 2. Show that this is possible (for any w) and give explicit expressions for suitable operators U_0 , U_1 , U_2 (depending on w) in terms of T and H, the single-qubit operators in the universal gate set $\{T, H, CNOT\}$.

- **Q5** We wish to correct for single qubit phase errors of the form $|0\rangle \rightarrow e^{i\theta} |0\rangle$, $|1\rangle \rightarrow e^{-i\theta} |1\rangle$ for arbitrary real θ by realising logical qubit states $|\overline{0}\rangle$ and $|\overline{1}\rangle$ as some chosen physical *n*-qubit states.
 - **5.1** Show that such a phase error on the *i*th physical qubit maps any state $|\psi\rangle = \alpha |\overline{0}\rangle + \beta |\overline{1}\rangle$ to a linear combination of $|\psi\rangle$ and $Z_i |\psi\rangle$.
 - **5.2** Explain why for n < 3 it is impossible to correct for arbitrary single qubit phase errors.
 - **5.3** Now consider the case n = 3 and choose $|\overline{0}\rangle = |+++\rangle$ and $|\overline{1}\rangle = |---\rangle$ where $|\pm\rangle = (|0\rangle \pm |1\rangle)/\sqrt{2}$. Show that by making suitable measurements we can choose a suitable unitary transformation to correct for any single qubit phase error. (Describe explicitly the measurement and unitary transformation operators.)
 - **5.4** Why would the alternative choice $|\overline{0}\rangle = |000\rangle$ and $|\overline{1}\rangle = |111\rangle$ not be useful for correcting single qubit phase errors? State what type of errors could instead be corrected using this coding?