

EXAMINATION PAPER

Examination Session: May/June

2020

Year:

Exam Code:

MATH4031-WE01

Title:

Bayesian Statistics IV

Time (for guidance only):	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Instructions to Candidates:	Credit will be given for your answers to all questions. All questions carry the same marks.			
	lease start each question on a new page. lease write your CIS username at the top of each page.			
	Show your working and explain your reasoning.			

Revision:

- Exam code MATH4031-WE01
- **Q1** Let $y = (y_1, ..., y_n)$ be a sequence of *n* observables assumed to be iid according to a Log-Normal sampling distribution with parameters $\mu \in \mathbb{R}$ and $\sigma^2 \in (0, +\infty)$; i.e.

 $y_i | \mu, \sigma^2 \stackrel{\text{iid}}{\sim} \text{LN}(\mu, \sigma^2)$, i = 1, ..., n

where μ is an unknown parameter, and σ^2 is assumed known.

Hint: The Log-Normal distribution denoted by $LN(\mu, \sigma^2)$ has density function

$$f(x|\mu,\sigma^2) = \begin{cases} \frac{1}{\sqrt{2\pi\sigma^2}} \frac{1}{x} \exp\left(-\frac{1}{2} \frac{(\log(x)-\mu)^2}{\sigma^2}\right) &, \text{ if } x \in (0,+\infty) \\ 0 &, \text{ otherwise} \end{cases}$$

- 1.1 Show that the LN distribution with known σ^2 is an exponential family of distributions.
- **1.2** Compute the likelihood of y given (μ, σ^2) and its sufficient statistic.
- **1.3** Derive the prior distribution which is conjugate to the likelihood function of the problem.
- 1.4 Using the conjugate prior, construct the (1 a)100% HPD posterior credible interval for μ , and show your working. Compute the bounds of the 95% HPD posterior credible interval for μ , when there is available a dataset y = (0.05, 0.36, 0.13, 0.22, 0.60) of size n = 5 observations; $\sigma^2 = 1$; the prior mean of μ is 0; and the prior variance of μ is 10.

Hint: The 0.975-quantile of the standard Normal distribution is $z_{0.975}^* = 1.959964$.

- **Q2** 2.1 Consider random variables $\theta \sim N(0, 1)$ and $y \mid \theta \sim N(\theta, 1)$, and a loss function $\ell(\theta, d) = (\theta d)^2$ for all $d \in \mathbb{R}$ and $\theta \in \mathbb{R}$. We denote as $N(\mu, \sigma^2)$, the Normal distribution with mean μ and variance σ^2 .
 - (i) Consider a decision rule δ_a , where $\delta_a(y) = ay$ for all $y \in \mathbb{R}$, and where $a \in \mathbb{R}$ is an arbitrary constant. Show that the (Frequentist) risk function for decision δ_a is

$$R(\theta, \delta_a) = (1-a)^2 \theta^2 + a^2.$$

- (ii) Show that δ_a is inadmissible when a < 0 or a > 1.
- (iii) Compute the Bayesian point estimator of θ under the aforesaid loss function and Bayesian model. State if this estimator is admissible and justify your answer.
- **2.2** Assume a 1-dimensional random quantity $x \sim Q(x|y)$, with unimodal density q(x|y). Show that the (1-a)-credible interval $C_a = [L, U]$ for x as a Bayesian rule C_a under the loss function

$$\ell(x, C_a; L, U) = k(U - L) - 1(x \in [L, U]), \quad \text{with} \quad k \in (0, \max_{\forall x \in \mathbb{R}} (q(x|y)))$$

is given by q(L) = q(U) = k, and $\mathsf{P}_Q(x \in [L, U]|y) = 1 - a$. Discuss known properties of the derived credible interval.

Q3 3.1 Consider the following probability density function, which is known up to a constant of proportionality

$$f(x) = \frac{e^x}{c},$$

where $x \in [0, 1]$. Assuming the numbers below are a sequence of independent random numbers uniformly distributed on [0, 1], generate 3 values from f(x) using inverse sampling.

$$0.156 \quad 0.579 \quad 0.936$$

3.2 The Kumaraswamy distribution is a flexible alternative to the beta distribution. The probability density function of this distribution is given by

$$f(x) = \alpha \beta x^{(\alpha-1)} (1 - x^{\alpha})^{(\beta-1)},$$

where $x \in (0, 1)$, $\alpha > 0$ and $\beta > 0$. Assuming that $\alpha = \beta = 2$, perform 3 iterations of rejection sampling from f(x) using a uniform distribution on [0, 1] as proposal distribution. State whether the generated values are accepted or not. Base your calculations on the following sequence of uniformly distributed random numbers between 0 and 1:

$$0.046 \quad 0.495 \quad 0.307 \quad 0.138 \quad 0.645 \quad 0.515$$

3.3 We want to use Gibbs sampling to sample from the joint distribution of A and B, which has probabilities proportional to the table below.

			B	
		1	2	3
	4	0.4	0.5	0.8
A	5	0.4	0.6	0.5
	6	0.5	0.7	0.9

Generate the output of the Gibbs sampler assuming availability of the sequence of uniform random numbers in [0, 1] given below and using as initial value $B^{(0)} = 2$.

 $0.963 \quad 0.801 \quad 0.526 \quad 0.039 \quad 0.101 \quad 0.675$

- Q4 A colony of insects is studied with a view to quantifying variation in the number of eggs laid and in the rate at which eggs successfully develop. Let N_i denote the number of eggs laid by insect *i*, for i = 1, ..., n, and E_i the number of eggs which develop. Eggs laid by insect *i* develop independently with probability of success p_i . Expert judgment is that the variability between insects in numbers of eggs laid should be modelled well by a Poisson distribution with fixed rate λ . Furthermore, it is thought that a beta distribution with fixed parameters α and β would adequately describe variability between insects to p_i .
 - **4.1** Draw a directed acyclic graph using plate notation for the Bayesian network describing the joint distribution of the $\{N_i\}$, $\{E_i\}$ and $\{p_i\}$ based on the above, and add vertices for the parameters λ , α and β .
 - **4.2** Specify the distributions for the vertices $\{N_i\}$, $\{E_i\}$ and $\{p_i\}$ given their respective parents.
 - **4.3** On closer inspection, the experts are uneasy about the choice of fixed values of the parameters. Therefore, the model is modified by assigning exponential prior distributions with rate 1 for the parameters α and β of the beta distribution and an improper prior proportional to $1/\lambda$ for λ . Derive (up to multiplicative constants) all the conditional distributions required for Gibbs sampling. Which of the conditional distributions are known distributions and what are their parameters?
 - **4.4** Describe an efficient approach to generating values from each of the conditional distributions in part **4.3**. You may refer to standard functions in \mathbb{R} or name standard algorithms. For any algorithm you name, show that preconditions (if any) for its application are met. You may use the fact that the third derivative of log $\Gamma(x)$ is negative for all positive x, where $\Gamma(\cdot)$ is the gamma function.

Hint-1: The Poisson distribution for $x \in \{0, 1, ...\}$ with parameter λ takes the form

$$P(x|\lambda) = e^{-\lambda} \frac{\lambda^x}{x!}.$$

Hint-2: The pdf of a beta-distributed random quantity $x \in (0, 1)$ with parameters a and b is

$$f(x|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}.$$

Hint-3: The exponential distribution for $x \in [0, \infty)$ with parameter θ takes the form

$$f(x|\theta) = \theta e^{-\theta x}$$

- **Q5** We are interested in estimating quantity x, where $x \in \mathbb{R}$. We are collecting a sequence, $y_n = x + \epsilon_n$ for n > 0, of measurements of x contaminated by independent Gaussian noise ϵ_n with known variance σ_{ϵ}^2 and zero mean. Suppose that x follows a priori a Gaussian distribution with known mean μ_0 and variance σ_0^2 .
 - **5.1** Formulate the problem of sequential estimation of x as a Gaussian linear filtering model by defining the corresponding equations. Compute the equations of the corresponding Kalman Filter that facilitate the required estimation.
 - **5.2** Compute the mean and variance, at step n, of the posterior and predictive distributions of x as functions of n, x_0 , and the fixed/known hyper-parameters.
 - **5.3** Based on the Kalman Filter prediction and update equations, show that this admits stationarity as $n \to \infty$.
 - **5.4** Based on the Kalman Filter prediction and update equations, show that the information from the observations is ignored when $\sigma_{\epsilon}^2 \to \infty$.
 - 5.5 Based on the Kalman Filter equations, show that

$$E(x|y_{1:n}) = \frac{1}{n} \sum_{i=1}^{n} y_i$$

if there is no prior information about x, namely $x \sim N(\mu_0, \sigma_0^2)$ with $\mu_0 = 0$ and $\sigma_0^2 \to \infty$.