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SECTION A

Q1 The action for two real scalar fields ϕ1(x) and ϕ2(x) is given by

S =

∫
d4x

{
− 1

2
m2ϕ1(x)2 − 1

2
m2ϕ2(x)2 − 1

2
∂µϕ1(x)∂µϕ1(x)− 1

2
∂µϕ2(x)∂µϕ2(x)

− λ
(
ϕ2

1(x) + ϕ2
2(x)

)5}
.

1.1 Write the equations of motion for the fields ϕ1(x) and ϕ2(x).

1.2 Write all global, continuous symmetries which leave this action invariant. Show
explicitly or argue that the action is invariant under these symmetries and
derive the Noether current(s) associated with these symmetries.

The Virasoro constraints for the quantum open relativistic string are given by

L̂m :=
1

2

(
∞∑

n=−∞

: α̂µm−nα̂
ν
n : ηµν

)
− aδm,0 = 0 ,

with α̂µ0 =
√

2α′ p̂µ.

1.3 Describe briefly the origin of this constraint.

1.4 The number operator is defined as

N̂ :=
∞∑
n=1

α̂µ−nα̂
ν
nηµν .

Derive a formula for the mass of a string state in terms of N̂ .

1.5 α̂µm satisfies the commutation relations

[α̂µm, α̂
ν
n] = mδm+nη

µν .

Compute the commutator [N̂ , α̂µm].

1.6 Using light cone gauge, define the vacuum state and the first excited state.
Describe physically what they correspond to and explain how this fixes the
value of a.
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Q2 An action for two free, real scalar fields ϕ1(x) and ϕ2(x) is given by

S =

∫
d4x

(
− 1

2
m2

1ϕ
2
1(x)− 1

2
∂µϕ1(x)∂µϕ1(x)− 1

2
m2

2ϕ
2
2(x)− 1

2
∂µϕ2(x)∂µϕ2(x)

)
µ = 0, 1, 2, 3.

2.1 Write down the quantum version of the general solution for the fields ϕ1 and
ϕ2 in terms of creation and annihilation operators. Write down the basic
commutation relations between creation and annihilation operators.

2.2 Write down the quantum state which consists of two particles of type ϕ1 with
momenta p1 and p2 and two particles of type ϕ2 with momenta p3 and p4.
Using the normal ordered quantum Hamiltonian Ĥ

Ĥ =

∫
d3p

(2π)3

(
ω(1)
p â†pâp + ω(2)

p b̂†pb̂p

)
ω(i)
p =

√
p2 +m2

i (i = 1, 2)

for the action (1), explicitly compute the energy of this state. In the expression
for Ĥ, the operators â†p, âp, b̂

†
p, b̂p are creation and annihilation operators for

the fields ϕ1 and ϕ2.

2.3 Based on your understanding of the structure of normal ordered quantum
Hamiltonians write down the normal ordered expression for the conserved mo-
mentum P̂i for this system and motivate your answer.

2.4 By explicit computation determine the commutator between two normal or-
dered operators P̂i and P̂j and explain why such a result is expected.

Q3 The action for four real scalar fields ϕ1(x), ϕ2(x), ϕ3(x), ϕ4(x) is given by

S = −
∫

d4x

{
1

2

(
4∑
i=1

∂µϕi(x)∂µϕi(x) +
4∑
i=1

m2
iϕi(x)2

)
+ λϕ1(x)ϕ2(x)ϕ3(x)ϕ4(x)

}

where λ is a real number, a coupling constant.

3.1 Write down the Feynman rules for this theory in position and momentum space.
Write down the integral expression for the Feynman propagators.

3.2 List all the vacuum bubbles which appear in this theory up to and including
order λ2. You should draw all the graphs and write the expressions for these
graphs in position space. You do not need to evaluate any of the graphs.

3.3 Explain whether it is possible in this theory for two particles of type “i” which
originate from the field ϕi, to scatter and produce two particles of type “j”
which originate from a field ϕj, where i 6= j. If this is not possible explain why,
and if it is, justify your answer by sketching at least one graph which would
contribute to such scattering.

3.4 Evaluate the four-point correlators

〈Ω|T{ϕ1(x)ϕ1(y)ϕ1(z)ϕ1(w)}|Ω〉 and 〈Ω|T{ϕ1(x)ϕ2(y)ϕ3(x)ϕ4(y)}|Ω〉 ,

up to and including second order in perturbation theory.
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Q4 Consider a 0-dimensional “field theory” with action

S = −m
2

2
φ2 − λ

4!
φ4 .

4.1 What does the expression

Iλ =

∫ ∞
−∞

φ2 e
i
~S dφ∫ ∞

−∞
e
i
~Sdφ

represent physically?

4.2 The Fresnel integral is given as∫
e−iaφ

2

dφ =

√
π

ia

(which you can assume without proof).

Use this to compute I0.

Hint: Differentiate both sides of the Fresnel integral with respect to a to obtain
expressions for more general integrals.

4.3 Similarly compute the order λ term to the series expansion of Iλ.

4.4 Write down the Feynman diagrams corresponding to the above expressions and
explain how they give the same results.

[For the Feynman rules: the vertex is given by −iλ/~ and you can deduce the
propagator from your result for I0].

4.5 What is the two-particle “scattering amplitude” to O(λ)?

4.6 Thus give the physical mass in this theory to O(λ).
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Q5 Consider the closed string action,

S = −T
2

∫
dτ

∫ 2π

0

dσ
√
−hhαβ∂αXµ∂βXµ .

5.1 Derive the equations of motion and the constraints from the above Lagrangian.

Hint: You may use without proof that ∂
∂hαβ

√
−h = −1

2
hαβ
√
−h.

5.2 Use the constraints to find hαβ in terms of the derivatives of the embedding
coordinates (up to an undetermined scale) and insert the solution back into
the action, what do you obtain? Why is this undetermined scale present?

5.3 Show that the following is a solution to the equations of motion and constraints:

hαβ =

(
−a2τ 2 0

0 1

)
,

X0 = Rτ 2 ,

X1 = R cos(σ) cos τ 2 ,

X2 = R cos(σ) sin τ 2

for some constant a you should find.

5.4 The Polyakov action for a p-brane (an object with p space-like directions and
one time-like direction embedded in D-dimensional space-time) reads

S =
1

2

∫ (
−
√
−hhαβ∂αXµ∂βXµ + (p− 1)

√
−h
)

dp+1σ .

Here we have collectively denoted the p+ 1 world-volume directions by σ. The
worldsheet indices α, β run from 0, 1, . . . , p, whereas the space-time indices
µ, ν = 0, 1, . . . D − 1. Xµ(σ) are the embedding coordinates.

For p > 1, compute the equation of motion for hαβ (constraints) in this case and
use it to completely determine hαβ in terms of the derivatives of the embedding
coordinates. Insert the solution back into the action to obtain the Nambu-Goto
action for p-branes.

Hint: You may still use without proof that ∂
∂hαβ

√
−h = −1

2
hαβ
√
−h.

5.5 Comment on any differences with the string case.
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