

EXAMINATION PAPER

Examination Session: May/June

Year:

2020

Exam Code:

MATH4151-WE01

Title:

Topics in Algebra and Geometry IV

Time (for guidance only):	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Instructions to Candidates:	Credit will be given for your answers to all questions. All questions carry the same marks.
	Please start each question on a new page. Please write your CIS username at the top of each page.
	Show your working and explain your reasoning.

Revision:

Throughout K denotes an algebraically closed field unless specified differently.

- **Q1** 1.1 Assume char(K) = 0. Let $g(x) \in K[x]$ of odd degree $d \ge 5$ and let $f(x, y) = y^2 g(x)$.
 - (i) Show that f(x, y) is irreducible in K[x, y].
 - (ii) Derive a criterion for the associated affine curve C_f to be non-singular.
 - (iii) State when the projective closure of C_f is non-singular.
 - **1.2** Let E be an elliptic curve defined by the equation

$$Y^2 Z = X^3 + bXZ^2 + cZ^3, \quad b, c \in K,$$

over a field K with char(K) = 3 and neutral point $\mathcal{O} = [0:1:0]$. Find the order of the groups E[3], E[5] and E[45]. Justify your answer.

Q2 Let C be a plane projective curve of degree $d \ge 3$ and over any field K given by

$$F(X, Y, Z) = (\alpha Y + Z)X^{d-1} + (-Y^2 + YZ + 2Z^2)X^{d-2} + \sum_{j=3}^d G_j(Y, Z)X^{d-j}$$

with $\alpha \in K$ and $G_j(Y, Z)$ homogenous of degree j. Note $P := [1:0:0] \in C$.

- **2.1** Compute the evaluation of the Hessian \mathcal{H}_F of F at the point P. For which α does the Hessian \mathcal{H}_F at P vanish?
- **2.2** Let $Q = [a : b : c] \neq P$ be another point in the plane. Write down the equation for the line *L* through *P* and *Q* and compute from the definition the intersection multiplicity $I_P(C, L)$. When do we have $I_P(C, L) = 1$, $I_P(C, L) = 2$, $I_P(C, L) \geq 3$? Interpret your answer.
- **Q3** Let P_1, \ldots, P_6 be six pairwise different points on \mathbb{P}^2_K with no three points collinear. For $j = 1, \ldots, 6$, let L_j be the line through P_j and P_{j+1} (with L_6 determined by P_6 and P_1). Let $Q_1 = L_1 \cap L_4$, $Q_2 = L_2 \cap L_5$, and $Q_3 = L_3 \cap L_6$. Assume that Q_1, Q_2, Q_3 all lie on a line L. Let F_1 be the cubic polynomial underlying $C_1 := L_1 \cup L_3 \cup L_5$ and F_2 the one for $C_2 := L_2 \cup L_4 \cup L_6$.
 - **3.1** Show that all lines L_i are pairwise different. Also show that the points Q_i are also pairwise different and distinct from the points P_i .
 - **3.2** Show that $C_1 \cap C_2 = \{P_1, \ldots, P_6, Q_1, Q_2, Q_3\}.$
 - **3.3** Show that the points P_i do not lie on L.
 - **3.4** Let $Q = [a : b : c] \neq Q_i$ be a fourth point on L, not belonging to either C_1 or C_2 . Let $\lambda = F_1(a, b, c)$ and $\mu = F_2(a, b, c)$. Consider

$$G(X, Y, Z) := \mu F_1(X, Y, Z) - \lambda F_2(X, Y, Z).$$

Show that $G \neq 0$. Let C_G be the associated curve. Show that L and C_G must have a common component.

- **3.5** Use this to show that the points P_1, \ldots, P_6 must lie on a conic.
- 3.6 Give (in words) a geometric interpretation of the result proved in 3.5.

Q4 4.1 Let $\Lambda = \mathbb{Z}w_1 + \mathbb{Z}w_2$, $w_1, w_2 \in \mathbb{C}$, be a lattice in \mathbb{C} . We write $\wp(z)$ for $\wp(z; \Lambda)$, the Weierstrass \wp -function attached to the lattice Λ .

Find the zeros and poles in \mathbb{C} , as well as their orders, of the functions:

- (i) $f(z) := \wp(4z) \wp(z)$.
- (ii) $g(z) := \wp(5z) \wp(z)$.
- **4.2** You are now given that the elliptic curve E defined by $Y^2Z = 4X^3 4XZ^2$ over \mathbb{C} corresponds to the lattice $\Lambda = \mathbb{Z}w + \mathbb{Z}iw$ for some real number w. Does the map $\psi : \mathbb{C} \to \mathbb{C}$, defined as $\psi(z) := iz$, induce an endomorphism on $E(\mathbb{C}) \cong \mathbb{C}/\Lambda$? Justify your answer.
- **Q5 5.1** Let *E* be an elliptic curve defined over a finite field \mathbb{F}_q where $q = p^r$, with *p* a prime number, and $r \in \mathbb{N}$. Assume that $E(\mathbb{F}_q)$ is isomorphic to the group $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ for some $m \in \mathbb{N}$.
 - (i) Show that p does not divide m.
 - (ii) Show that m divides q-1.
 - (iii) Let $\{P_1, P_2\}$ be a basis of E[m], and consider the matrix $A_m \in M_2(\mathbb{Z}/m\mathbb{Z})$ associated to the Frobenius endomorphism $\phi_q \in End(E)$, when restricted to E[m], with respect to the selected basis. Show that,

Trace
$$(A_m) \equiv 2 \mod m$$
.

- (iv) Set $a := (q+1) \#E(\mathbb{F}_q)$. Does the equation a = 2 + 3m hold? Justify your answer.
- **5.2** Let *E* be an elliptic curve defined over the finite field \mathbb{F}_q , and ℓ be a prime number with $q^2 q \neq 0 \mod \ell$. Set $N := \#E(\mathbb{F}_q)$ and assume that ℓ divides *N*. Assume further that there exists a point $P \in E[\ell]$ such that $\phi_q(P) \neq P$, where $\phi_q \in End(E)$ is the Frobenius endomorphism. Show that,
 - (i) There exists a point $Q \in E(\mathbb{F}_q)[\ell] := E(\mathbb{F}_q) \cap E[\ell]$ such that $\{P, Q\}$ is a basis for $E[\ell]$.
 - (ii) For any integer n > 1 we have,

$$\phi_q^n(P) = P$$
 if and only if $\sum_{i=0}^{n-1} q^i \equiv 0 \mod \ell$.