

EXAMINATION PAPER

Examination Session: May/June

2020

Year:

Exam Code:

MATH4161-WE01

Title:

Algebraic Topology IV

Time (for guidance only):	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Instructions to Candidates:	Credit will be given for your answers to all questions. All questions carry the same marks.
	Please start each question on a new page. Please write your CIS username at the top of each page.
	Show your working and explain your reasoning.

Revision:

- Q1 1.1 State the Mayer-Vietoris sequence theorem.
 - **1.2** Compute the homology of the topological space $S^1 \times S^2$.
 - **1.3** Prove that \mathbb{CP}^2 is not a retract of \mathbb{CP}^3 . Recall: given a subspace $i: X \hookrightarrow Y$, a retraction is a map $r: Y \to X$ with $r \circ i = \text{Id}$. Hint: first compute the cohomology ring of \mathbb{CP}^n for n = 2, 3.
- **Q2** 2.1 Define a good pair (X, A).
 - **2.2** Let X be a topological space. The cone on X, $\mathscr{C}(X)$, is defined to be the quotient space

$$\frac{X \times I}{X \times \{0\}}.$$

Show that $(X \times I, X \times \{0\})$ is a good pair and compute the homology groups of $\mathscr{C}(X)$.

- **2.3** Compute the reduced homology $\widetilde{H}_*(SX)$, where $SX := \mathscr{C}(X) \cup_{X \times \{1\}} \mathscr{C}(X)$ is the suspension of X, in terms of the homology groups of X.
- Q3 True or false? For each item, either prove or disprove.
 - 3.1 Two topological spaces with the same homology groups are homeomorphic.
 - **3.2** If $0 \to \mathbb{Z} \to G \to \mathbb{Z}/6 \to 0$ is an exact sequence of abelian groups, then $G \cong \mathbb{Z} \oplus \mathbb{Z}/6$.
 - **3.3** For every topological space X, X is homotopy equivalent to $X \times \mathbb{R}$.
 - **3.4** There exists a CW-complex X with homology groups

$$H_0(X) \cong \mathbb{Z} \cong H_3(X)$$
 and $H_1(X) \cong \mathbb{Z}/4 \cong H_2(X)$

and $H_k(X) = 0$ for $k \ge 4$.

3.5 There exists a closed, orientable manifold M with homology

$$H_0(M) \cong \mathbb{Z} \cong H_3(M)$$
 and $H_1(M) \cong \mathbb{Z}/4 \cong H_2(M)$

and $H_k(M) = 0$ for $k \ge 4$.

Q4 4.1 Show that the short exact sequence

$$0 \to \mathbb{Z}/2 \to \mathbb{Z}/4 \to \mathbb{Z}/2 \to 0$$

induces, for every topological space X, a short exact sequence of cochain complexes

$$0 \to C^*(X; \mathbb{Z}/2) \to C^*(X; \mathbb{Z}/4) \to C^*(X; \mathbb{Z}/2) \to 0.$$

4.2 Let

$$\beta \colon H^n(X; \mathbb{Z}/2) \to H^{n+1}(X; \mathbb{Z}/2)$$

be the connecting homomorphism in the associated long exact sequence. Write down this long exact sequence for $X = \mathbb{RP}^2$. Compute the map

$$\beta \colon H^1(\mathbb{RP}^2; \mathbb{Z}/2) \to H^2(\mathbb{RP}^2; \mathbb{Z}/2).$$

(You should first compute $H^i(\mathbb{RP}^2; \mathbb{Z}/2)$ for every *i*.)

- **4.3** Prove that $\beta(x) = x \smile x$ for every $x \in H^1(\mathbb{RP}^2; \mathbb{Z}/2)$. You may quote $\mathbb{Z}/2$ -coefficient Poincaré duality if you use it.
- **Q5** 5.1 Define the Euler characteristic $\chi(X)$ of a finite CW-complex X.
 - **5.2** Prove that $\chi(X)$ is independent of the choice of CW structure on X, stating carefully any results from the course that you use. You may assume that for

$$0 \to A \to B \to C \to 0$$

a short exact sequence of finitely generated abelian groups, the ranks satisfy rk(B) = rk(A) + rk(C).

- 5.3 Prove that the Euler characteristic of a closed, orientable 3-manifold is zero.
- **5.4** Let X be a finite CW-complex and let $p: \widetilde{X} \to X$ be a k-sheeted covering space, for $0 < k < \infty$. Prove that $\chi(\widetilde{X}) = k \cdot \chi(X)$.
- **5.5** Let Σ_g be a closed, connected, orientable surface of genus g. Use the previous question to place constraints on the values of h (in terms of g) for which there exists a connected covering space $p: \widetilde{\Sigma}_g \to \Sigma_g$ with $\widetilde{\Sigma}_g \cong \Sigma_h$.
- **5.6** Show that all your permitted values of h are realised by covering maps $p: \Sigma_h \to \Sigma_g$.