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Q1 1.1 State the Mayer-Vietoris sequence theorem.

1.2 Compute the homology of the topological space S1 × S2.

1.3 Prove that CP2 is not a retract of CP3. Recall: given a subspace i : X ↪→ Y ,
a retraction is a map r : Y → X with r ◦ i = Id. Hint: first compute the
cohomology ring of CPn for n = 2, 3.

Q2 2.1 Define a good pair (X,A).

2.2 Let X be a topological space. The cone on X, C (X), is defined to be the
quotient space

X × I
X × {0}

.

Show that (X × I,X × {0}) is a good pair and compute the homology groups
of C (X).

2.3 Compute the reduced homology H̃∗(SX), where SX := C (X)∪X×{1} C (X) is
the suspension of X, in terms of the homology groups of X.

Q3 True or false? For each item, either prove or disprove.

3.1 Two topological spaces with the same homology groups are homeomorphic.

3.2 If 0 → Z → G → Z/6 → 0 is an exact sequence of abelian groups, then
G ∼= Z⊕ Z/6.

3.3 For every topological space X, X is homotopy equivalent to X × R.

3.4 There exists a CW-complex X with homology groups

H0(X) ∼= Z ∼= H3(X) and H1(X) ∼= Z/4 ∼= H2(X)

and Hk(X) = 0 for k ≥ 4.

3.5 There exists a closed, orientable manifold M with homology

H0(M) ∼= Z ∼= H3(M) and H1(M) ∼= Z/4 ∼= H2(M)

and Hk(M) = 0 for k ≥ 4.
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Q4 4.1 Show that the short exact sequence

0→ Z/2→ Z/4→ Z/2→ 0

induces, for every topological space X, a short exact sequence of cochain com-
plexes

0→ C∗(X; Z/2)→ C∗(X; Z/4)→ C∗(X; Z/2)→ 0.

4.2 Let
β : Hn(X; Z/2)→ Hn+1(X; Z/2)

be the connecting homomorphism in the associated long exact sequence. Write
down this long exact sequence for X = RP2. Compute the map

β : H1(RP2; Z/2)→ H2(RP2; Z/2).

(You should first compute H i(RP2; Z/2) for every i.)

4.3 Prove that β(x) = x ^ x for every x ∈ H1(RP2; Z/2). You may quote Z/2-
coefficient Poincaré duality if you use it.

Q5 5.1 Define the Euler characteristic χ(X) of a finite CW-complex X.

5.2 Prove that χ(X) is independent of the choice of CW structure on X, stating
carefully any results from the course that you use. You may assume that for

0→ A→ B → C → 0

a short exact sequence of finitely generated abelian groups, the ranks satisfy
rk(B) = rk(A) + rk(C).

5.3 Prove that the Euler characteristic of a closed, orientable 3-manifold is zero.

5.4 Let X be a finite CW-complex and let p : X̃ → X be a k-sheeted covering
space, for 0 < k <∞. Prove that χ(X̃) = k · χ(X).

5.5 Let Σg be a closed, connected, orientable surface of genus g. Use the previous
question to place constraints on the values of h (in terms of g) for which there

exists a connected covering space p : Σ̃g → Σg with Σ̃g
∼= Σh.

5.6 Show that all your permitted values of h are realised by covering maps
p : Σh → Σg.
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