

EXAMINATION PAPER

Examination Session: May/June

Year: 2020

Exam Code:

MATH4241-WE01

Title:

Representation Theory IV

Time (for guidance only):	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Instructions to Candidates:	Credit will be given for your answers to all questions. All questions carry the same marks.
	Please start each question on a new page. Please write your CIS username at the top of each page.
	Show your working and explain your reasoning.

Revision:

Q1 Let (ρ, V) be a representation of a finite group G, and let

$$V^G = \{ v \in V : \rho(g)v = v \text{ for all } g \in G \}.$$

- **1.1** Construct (with proof) a *G*-homomorphism $\pi : V \to V$ such that $\pi(v) \in V^G$ for all $v \in V$ and $\pi(v) = v$ for all $v \in V^G$.
- **1.2** Using part **1.1**, prove that there is a subrepresentation $W \subset V$ such that $V = V^G \oplus W$. You do not need Maschke's theorem and may not assume it.
- **1.3** Let χ be the character of V and let **1** be the trivial character. By taking the trace of the map π from **1.1**, prove that

$$\dim V^G = \langle \chi, \mathbf{1} \rangle \,.$$

1.4 Suppose further that V is an irreducible and nontrivial representation of G. Prove that

$$\sum_{g \in G} \rho(g) = 0.$$

Q2 Let G be the group of order 20 generated by two elements x and y subject to the relations

$$x^4 = e, \quad y^5 = e, \quad xyx^{-1} = y^2.$$

Its elements are

 $\{x^a y^b : 0 \le a \le 3, 0 \le b \le 4\}$

and its conjugacy classes are:

 $\{e\}, \quad \{y, y^2, y^3, y^4\}, \quad \{xy^i: 0 \le i \le 4\}, \quad \{x^2y^i: 0 \le i \le 4\}, \quad \text{and} \quad \{x^3y^i: 0 \le i \le 4\}.$

- **2.1** Show that G has a normal subgroup H with $G/H \cong C_4$.
- **2.2** Hence find the character table of G.

Now let (ρ, V) be the irreducible representation of G of largest dimension.

- **2.3** By restricting ρ to the subgroup $\langle y \rangle$, or otherwise, show that $\rho(y)$ is diagonalizable and find its eigenvalues.
- **2.4** Find matrices A and B such that, with respect to some basis of V,

$$\rho(y) = A$$

and

$$\rho(x) = B$$

Hint: choose a basis so that $\rho(y)$ *is diagonal.*

Q3 Let \mathfrak{g} be the Lie algebra

$$\left\{ \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} : a, b, c \in \mathbb{C} \right\}.$$

Let $X = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \text{ and } Z = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

- **3.1** Compute [X, Y]. Show that [A, Z] = 0 for all $A \in \mathfrak{g}$.
- **3.2** If (ρ, V) is an irreducible finite-dimensional representation of \mathfrak{g} , apply Schur's lemma to show that $\rho(Z)$ is a scalar.
- **3.3** By considering tr $\rho(Z)$, show that if (ρ, V) is an irreducible finite-dimensional representation of \mathfrak{g} then $\rho(Z) = 0$.
- **3.4** Let $V = \mathbb{C}[x]$ be the (infinite-dimensional) vector space of complex polynomials in one variable. There is a representation ρ of \mathfrak{g} on V for which

$$(\rho(X)f)(x) = f'(x)$$

and

$$(\rho(Y)f)(x) = xf(x).$$

What is $\rho(Z)$ for this representation? Here f' denotes the derivative of f.

- **3.5** Prove that V is irreducible. Hint: Suppose that $W \subset V$ is a nonzero subrepresentation. Show that W must contain a nonzero constant, and then that W = V.
- **Q4** 4.1 Let $V = \mathbb{C}^2$ be the standard representation of $\mathfrak{sl}_{2,\mathbb{C}}$. Decompose the representation $V \otimes V \otimes V$ into irreducibles.
 - Now let $\mathfrak{g} = \mathfrak{sl}_{3,\mathbb{C}}$, and let $V = \mathbb{C}^3$ be the standard representation of \mathfrak{g} .
 - **4.2** Let $W = \text{Sym}^2(V) \otimes V$ where $V = \mathbb{C}^3$ is the standard representation of \mathfrak{g} . Draw a diagram of the weights of W, showing your working.
 - **4.3** Show that, if e_1, e_2, e_3 is the standard basis of V, then $e_1^2 \otimes e_2 (e_1e_2) \otimes e_1$ is a highest weight vector in W.
- Q5 5.1 For which partitions μ does the Specht module S^{μ} occur as a subrepresentation of the representation M^{λ} of S_6 , where $\lambda = (2, 2, 2)$? State clearly any results you use.
 - **5.2** Let λ be the partition (2,2). Let $s = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $t = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$. Show that the polytabloids e_s and e_t are a basis for S^{λ} .
 - **5.3** Let $n \ge 4$. For $\lambda = (n-2,2)$, prove that M^{λ} is a direct sum of three distinct irreducible representations.

You may assume that, if χ is the permutation character for a group G acting on a set X, then

$$\langle \chi, \chi \rangle = |\{ orbits of G on X \times X \}|.$$