

EXAMINATION PAPER

Examination Session: May/June

2021

Year:

Exam Code:

MATH1051-WE01

Title:

Analysis I

Time (for guidance only):	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Instructions to Candidates:	Credit will be given for your answers to all questions. All questions carry the same marks.				
	Please start each question on a new page. Please write your CIS username at the top of each page.		h page.		
	To receive credit, your answers must show your working and explain your reasoning.				

Revision:

Exam code MATH1051-WE01

Q1 1.1 Let $a, b, c, d \in \mathbb{R}$ with b, d > 0 and $\frac{a}{b} < \frac{c}{d}$. Show that

$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}.$$

1.2 Let $n \ge 2$ be an integer. Show that

$$\left(1+\frac{1}{n-1}\right)^n > \left(1+\frac{1}{n}\right)^{n+1}$$
 is equivalent to $\left(1+\frac{1}{n^2-1}\right)^n > 1+\frac{1}{n}$.

1.3 Let $n \ge 2$ be an integer. Show that

$$\left(1+\frac{1}{n-1}\right)^n > \left(1+\frac{1}{n}\right)^{n+1}.$$

Q2 2.1 Let *M* be a non-empty set of real numbers which is bounded above, and let $a = \sup M$. Given $\varepsilon > 0$, show that there exists an $m \in M$ with

$$0 \leq a - m < \varepsilon$$
.

2.2 Show that the set

$$M = \left\{ \left. \frac{m^3 + 12n^2m}{8n^3 + 6nm^2} \in \mathbb{R} \right| \, n, m \in \mathbb{N}, m \le 2n \right\}$$

is bounded, and determine its infimum and supremum. Furthermore, decide whether the set has a maximum or minimum.

Q3 3.1 Let $(x_n)_{n \in \mathbb{N}}$ be a convergent sequence of real numbers with limit $x \in \mathbb{R}$. Let $(y_n)_{n \in \mathbb{N}}$ be a sequence of real numbers with

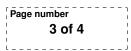
$$y_n - \frac{1}{n} < x_n < y_n + \frac{1}{n}$$

for all $n \in \mathbb{N}$. Show that $(y_n)_{n \in \mathbb{N}}$ converges to x, using the ε -definition of convergence.

3.2 Let $\alpha \in \mathbb{R}$ with $1 < \alpha$. Define $a_1 = 2\alpha$, and for $n \in \mathbb{N}$ let

$$a_{n+1}=\frac{a_n^2-\alpha}{2a_n-(\alpha+1)}.$$

Show that $(a_n)_{n \in \mathbb{N}}$ is convergent, and determine $\lim_{n \to \infty} a_n$. Hint: First show that $a_n \ge \alpha$ for all $n \in \mathbb{N}$.



Exam code MATH1051-WE01

Q4 4.1 Calculate $\liminf_{n\to\infty} x_n$ and $\limsup_{n\to\infty} x_n$ of the sequence $(x_n)_{n\in\mathbb{N}}$ given by

$$x_n = \begin{cases} (-1)^n + 1 & n = 3k \text{ with } k \in \mathbb{N} \\ \left((-1)^n + \frac{1}{n} \right)^n & n = 3k - 1 \text{ with } k \in \mathbb{N} \\ \frac{n^2 + n - 1}{(2n + 1)(n + 2)} & n = 3k - 2 \text{ with } k \in \mathbb{N} \end{cases}$$

4.2 Let $(a_n)_{n \in \mathbb{N}}$ be a bounded sequence of real numbers, and let $a = \liminf_{n \to \infty} a_n$. Given $\varepsilon > 0$, show that there are at most finitely many $n \in \mathbb{N}$ with $a_n \le a - \varepsilon$.

Q5 5.1 Decide whether the series $\sum_{n=1}^{\infty} a_n$ converges, where

$$a_n = \frac{1}{\binom{5n}{4n}}.$$

5.2 Determine all $\alpha \in \mathbb{R}$ for which

$$\sum_{n=1}^{\infty} \frac{\sqrt{(n+1)^3} - \sqrt{n^3}}{n^{\alpha}}$$

is convergent.

- **Q6 6.1** Let *f* be a continuous function on \mathbb{R} with f(2) = f(0). Consider f(x) f(x + 1) to show that there exists an $x_0 \in [0, 1]$ such that $f(x_0 + 1) = f(x_0)$.
 - **6.2** Let *f* be a continuous function on $[0, \infty)$ with $\lim_{x\to\infty} f(x) = L \in \mathbb{R}$. Show *f* is bounded. Does the statement hold for *f* continuous on $(0, \infty)$ with $\lim_{x\to\infty} f(x) = L$?
- **Q7** 7.1 For $n \in \mathbb{N}$ with $n \ge 2$ define

$$f(x) = \begin{cases} x^n \sin(1/x^2) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Show *f* is differentiable at x = 0. Determine for which *n* the derivative *f'* is continuous at x = 0.

7.2 Let a < b be two (real) solutions for the equation $e^x \sin x = 1$. Show there exists (at least) one solution of $e^x \cos x = -1$ in the interval (a, b). (Hint: Consider the function $e^{-x} - \sin x$.)

- **Q8 8.1** Show that the power series $f(x) = \sum_{k=1}^{\infty} \frac{1}{k} x^k$ converges absolutely for |x| < 1 but diverges at x = 1.
 - **8.2** Let $\varepsilon > 0$. Show that for $N \in \mathbb{N}$ with $1/N < \varepsilon$ we have

$$0 < (1-x)\sum_{k=N}^{\infty} \frac{1}{k} x^k < \varepsilon$$

for all $x \in [0, 1)$.

8.3 Use 8.2 to show

$$\lim_{x \to 1^{-}} (1 - x) f(x) = 0.$$

(Hint: $\delta = 1/N^2$ will do).

- **Q9** 9.1 For $n \in \mathbb{N}$ let $f_n(x) = \frac{1}{x^{n+1}}$ on $I = [1, \infty)$. Show that f_n converges uniformly on $[r, \infty)$ for all r > 1. Is the convergence also uniform on I?
 - **9.2** Let g(x) be a bounded and continuous function on $(0, \infty)$. Let $r \ge 1$. Show that the improper integral

$$\int_r^\infty g(x)f_n(x)dx.$$

exists for all $n \in \mathbb{N}$, and

$$\lim_{n\to\infty}n\int_r^{\infty}g(x)f_n(x)dx=0 \qquad \text{if } r>1.$$

Give, with proof, <u>two</u> counterexamples (which do not differ by a constant) for the last statement if r = 1 (but g(x) still bounded and continuous).

Q10 For $x \in \mathbb{R}$ let s(x) be the distance of x to the 'closest' integer. You may assume that s(x) is 1-periodic and continuous given on [0, 1] by

$$s(x) = \begin{cases} x & \text{if } x \in [0, 1/2] \\ 1 - x & \text{if } x \in [1/2, 1]. \end{cases}$$

10.1 Set

$$f(x) = \sum_{k=0}^{\infty} \frac{s(4^k x)}{4^k}.$$

Show that f(x) defines a continuous function on \mathbb{R} .

10.2 Explicitly compute $\int_0^1 f(x) dx$, justifying all steps.