

EXAMINATION PAPER

Examination Session:	Year:		Exam Code:		
May/June	2021		MATH1061-WE01		
Title: Calculus I					
Time (for guidance only)): 3 hours	3 hours			
Additional Material provi	ided:				
Materials Permitted:					
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.			
Instructions to Candidate	es: Credit will be	Credit will be given for your answers to all questions.			
	All questions	All questions carry the same marks.			
	Please start	Please start each question on a new page.			
		Please write your CIS username at the top of each page.			
		To receive credit, your answers must show your working and explain your reasoning.			
	1		Revision:		

Q1 Calculate

$$\int_0^{1/2} \frac{(16x^2 - 8x + 1) \exp(\cos(\pi x))}{\exp(\cos(\pi x)) + \exp(\sin(\pi x))} \, dx.$$

Q2 Consider a third order ordinary differential equation for y(x) of the form

$$y''' - 2y'' - y' + 2y = \phi,$$

where ϕ is some known function of x. Derive integral formulae for the functions u_1, u_2, u_3 , such that

$$y = u_1 e^x + u_2 e^{-x} + u_3 e^{2x}$$

solves the above differential equation. In each case the integrand should be a given function of x multiplied by ϕ .

Q3 The region *D* is shown as the shaded region in the figure. The boundary of *D* consists of the unit circle centred at the origin, together with parts of the curves $2y = x^2 + 8x + 12$ and $2y = 6 - x^2$ and $8y = 5x^2 + 2x - 16$. Calculate $\iint_{\Sigma} x \, dx \, dy$.

Q4 The function g(x) has period 2π and its Fourier series is given by

$$\frac{1}{3}\pi^2 + 4\sum_{n=2}^{\infty} \frac{(-1)^n}{n^2} \cos(nx).$$

Without finding g(x), calculate the integral $\int_0^{\pi} (g-3)^2 dx$. You may use the result that

$$\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}.$$

Q5 Given a function f(x), that is differentiable at least three times for all $x \in [0, 1]$, define the associated quadratic polynomial $Y_2(x)$ by the properties that $f(0) = Y_2(0)$ and $f(1) = Y_2(1)$ and $f'(0) = Y'_2(0)$.

Give a formula for $Y_2(x)$ and derive a Lagrange-type formula for the remainder $r_2(x)$, when $Y_2(x)$ is used to approximate f(x) in the interval (0, 1).

For the example with $f(x) = e^x$, calculate $Y_2(x)$ and prove that $P_2(x) \le Y_2(x)$, where $P_2(x)$ is the Taylor polynomial of order two about x = 0 for f(x). Furthermore, for this example, use your result for $r_2(x)$ to prove that $f(x) \le Y_2(x)$ for all $x \in (0,1)$.

Q6(6.1) Find the equation of the tangent plane T to the surface

$$f(x, y, z) = -xy^2 - z(x + y) + 6y - z^3/3 + 12 = 0$$

at the point (x, y, z) = (0, -1, 3).

- (6.2) Find the terms in the Taylor series of the function $f(x, y) = \ln(1+x-y)\sin(xy)$ expanded about the point $(x_0, y_0) = (1, 0)$ to quadratic order.
- Q7(7.1) Find and classify the stationary points of the function

$$f(x,y) = (x^3 - 3x)(y - 1) + \frac{1}{3}y^3 - y.$$

- (7.2) A kitchenware supplier manufactures lidless saucepans in the shape of a cylinder of height h and radius r. The material for the bottom of the saucepan costs α /unit area, while the material for the side of the saucepan costs β /unit area. If the total cost of the material in the saucepan is C, use the method of Lagrange multipliers to calculate the maximum possible volume V of the saucepan, in terms of C, α and β .
- Q8 Explain briefly why the solutions to the second order linear differential equation

$$(x^2 - 2)\frac{d^2y}{dx^2} + 4x\frac{dy}{dx} + \lambda y = 0.$$

can be expressed as a power series $y = \sum_{n=0}^{\infty} a_n x^n$. Find a recurrence relation satisfied by the coefficients a_n and use the ratio test to determine for which values of x the series converges. In the case that $\lambda = 2$ find an explicit expression (i.e. not as an infinite series) for the general solution y(x) in terms of x and the parameters a_0 and a_1 .

Q9 A bar of metal lies along the *x*-axis between x = 0 and $x = \pi$. Its temperature u(x, t) satisfies the equation $u_t = k^2 u_{xx}$. Both ends of the bar are insulated so that $u_x(0, t) = u_x(\pi, t)$, and initially the temperature of the bar is u(x, 0) = 100x.

Use the method of separation of variables to obtain the solution u(x, t) as a series in the form

$$u(x,t)=\sum_{n=0}^{\infty}A_nX_n(x)T_n(x),$$

where $X_n(x)$ satisfies $X'' = \lambda X$ and $X_n'(0) = X_n'(\pi)$. (You may use that the operator $\mathcal{L} = \frac{d^2}{dx^2}$ is self adjoint with respect to the inner product $(f,g) = \int_0^\pi f(x)g(x)dx$ if $f'(0) = g'(0) = f'(\pi) = g'(\pi) = 0$.)

Q10 The function y(t) satisfies the first order differential equation.

$$\frac{dy}{dt} + \alpha y = f(t)$$

where $\alpha > 0$.

By taking the Fourier transform of this equation, find an expression for $\tilde{y}(p)$, the Fourier transform of y(t), in terms of $\tilde{f}(p)$, the Fourier transform of f(t). Use the convolution theorem to find y(t) in terms of f(t). You may use that the Fourier transform of

$$g(t) = \begin{cases} e^{-t} \text{ for } t > 0\\ 0 \text{ for } t < 0 \end{cases}$$

is
$$\tilde{g}(p) = (ip + 1)^{-1}$$
.

Find the solution y(t) for $t > \beta > 0$ in the case that

$$f(t) = \begin{cases} 1 \text{ for } 0 < t < b \\ 0 \text{ otherwise.} \end{cases}$$