

EXAMINATION PAPER

Examination Session: May/June Year: 2021

Exam Code:

MATH1551-WE01

Title:

Maths For Engineers and Scientists

Time (for guidance only):	3 hours	
Additional Material provided:	Formula sheet (two pages)	
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Instructions to Candidates:	Credit will be given for your answers to all questions. All questions carry the same marks.
	Please start each question on a new page.
	Please write your CIS username at the top of each page.
	To receive credit, your answers must show your working and explain your reasoning.

Revision:

Q1 Consider the matrix

Page number

2 of 3

$$A = \begin{bmatrix} 0 & 1 & -3 & 0 \\ -7 & 0 & 0 & -3 \\ -2 & 0 & 0 & -1 \\ 0 & -2 & 7 & 0 \end{bmatrix}$$

- **1.1** Show that *A* is invertible.
- **1.2** Show that *A* does not have an *LU* decomposition.
- **1.3** Find a matrix *P* such that *PA* does have an *LU* decomposition. (There is no need to find *L* and *U*, but you should justify your answer.)
- 1.4 Find the eigenvalues of A. What is their relation to the determinant?
- **Q2** 2.1 Find all complex numbers *z* that satisfy each of the following equations.
 - (i) $z^2 = z^{1/2}$.
 - (ii) $\sin(z) = \cos(z)$.
 - (iii) $\sin(z) = i \cos(z)$.
 - **2.2** A square in the complex plane has centre at -3 2i and a vertex at 1 + i.
 - (i) Find the other vertices.
 - (ii) Calculate the area of the square.
- **Q3** 3.1 Show that $\sin(5\theta) = 16 \sin^5 \theta 20 \sin^3 \theta + 5 \sin \theta$, and find a similar expression for $\cos(5\theta)$ in terms of $\cos \theta$.
 - **3.2** Use **3.1** to find an <u>exact</u> expression for $\tan \frac{\pi}{5}$.

3.3 Hence show that the area of a regular pentagon of side length *a* is $\frac{5a^2}{4\sqrt{5-2\sqrt{5}}}$.

Q4 Three planes are given by the vector equations

$$(\mathbf{x} - \mathbf{a}) \cdot \mathbf{n} = 0,$$

 $(\mathbf{x} \times \mathbf{a}) \cdot \mathbf{n} = 0,$
 $\mathbf{x} = \mathbf{a} + \lambda \mathbf{n} + \mu \mathbf{a} \times \mathbf{n},$

where $\boldsymbol{a} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ and $\boldsymbol{n} = \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}$.

- **4.1** Find the Cartesian equation of each plane.
- **4.2** Determine whether or not the three planes intersect at a single point, and if so find it.

Exam code MATH1551-WE01

- **Q5** 5.1 Calculate $\lim_{x\to 0} \frac{\sin^2(3x)}{x\sin(2x)}$ stating any standard result you use.
 - 5.2 Using Calculus of Limits (and without using Taylor's theorem or l'Hôpital's rule), show that

$$\lim_{t \to 0} \frac{\sqrt{1+t}-1}{t} = \frac{1}{2}.$$

Deduce that the function $f(x) = \sqrt{x}$ is differentiable for all x > 0 and find its derivative from the first principles.

- **5.3** State the rule for finding the *n*th derivative of a product f(x) = u(x)v(x) and use it to find the third derivative of $f(x) = e^x \cosh(x)$ with respect to x. Simplify your answer.
- **Q6 6.1** Find integer *n* so that the degree *n* Taylor polynomial $P_{n,0}(x)$ approximates $f(x) = e^x$ up to two decimal places for each x in [-0.5, 0.5]. Use $P_{n,0}(x)$ to approximate $e^{0.25}$. You may use wihout proof that $e^{0.5} < 2$.
 - **6.2** Fix A > 0. Argue that the equation $xe^x = A$ has a unique positive solution. Starting with the initial approximation $x_0 = A$, use the Newton-Raphson method to find the first improvement x_1 .
- **Q7** 7.1 If f(x, y) is a function of x and y, and if $x = e^{-v} \sin(3u)$ and $y = e^{-v} \cos(3u)$, use the Chain Rule to express $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$ in terms of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.
 - **7.2** Let r(x) be the absolute value of the complex number z = 5 + ix. Carefully derive the Taylor series about x = 0 for the function r(x). For which values of x does your series converge?
 - 7.3 Find all critical points of the function

$$f(x, y) = (x - 1)^2 + \cos^2(y).$$

Determine which of these points are local maxima, local minima, or saddle points.

Q8 8.1 Find the general solution of

$$y'' - 4y' + 4y = -2 + 12x - 4x^2$$

and hence find the solution satisfying y(0) = 2, y'(0) = 6.

8.2 For a function $f(r, \theta)$, consider the equation

$$r^{2}\frac{\partial^{2}f}{\partial r^{2}} + r\frac{\partial f}{\partial r} + \frac{\partial^{2}f}{\partial \theta^{2}} = 0.$$
 (1)

Show that the function $f(r, \theta) = r \sin \theta$ solves (1), but neither $f_1(r, \theta) = r$ nor $f_2(r,\theta) = \sin\theta$ do.

- **8.3** Given integer $n \ge 0$ find real α so that $f(r, \theta) = r^{\alpha} \cos(n\theta)$ solves (1) and satisfies $f(0, \theta) = 0$ for all θ .
- **8.4** Given integer $n \ge 0$ find the most general solution of (1) of the form

$$f(r, \theta) = Ar^{\alpha} \cos(n\theta) + Br^{\beta} \sin(n\theta)$$
 with $f(0, \theta) = 0$,

where A, B, α , and β are real numbers.