

EXAMINATION PAPER

Examination Session: May/June

2021

Year:

Exam Code:

MATH1607-WE01

Title:

Dynamics I

Time (for guidance only):	2 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Instructions to Candidates:	Credit will be given for your answers All questions carry the same marks.	to all questic	ons.
	Please start each question on a new Please write your CIS username at th	page. he top of eac	h page.
	To receive credit, your answers mus explain your reasoning.	t show your	working and

Revision:

- **Q1 1.1** A particle of unit mass moves on the *x*-axis. It starts at x = 0 with positive velocity *u*, and is slowed by a force of magnitude 2vx, where *v* denotes its speed. What is the maximum value x_m of *x* that it reaches?
 - **1.2** A particle of constant mass *m* is moving along the *z*-axis, starting from rest at $z = z_0 > 0$. Acting on it are a force of magnitude km/z^2 directed away from z = 0, and a force of magnitude *mh* directed towards z = 0, where *k* and *h* are constants. What does *h* need to be, in order that the particle has zero speed when it reaches $z = z_1$? Here $0 < z_1 < z_0$.
 - **1.3** A water drop falls vertically from rest, with the only force on it being its weight mg. Since vapour condenses on it as it falls, its mass m increases, in such a way that $m(t) = m_0 \exp(kt)$ where m_0 and k are positive constants. What is its speed w when its mass has doubled?
- **Q2 2.1** A mass *m* at position *x* is attached to a spring with spring constant *k*. There is no damping, but there is an external force $F(t) = 4m\cos^3(\omega t)$ where ω is a positive constant.
 - (i) Determine for which values of ω , if any, resonance occurs.
 - (ii) For all other values of ω , find x(t) given the initial conditions x(0) = 0 and $\dot{x}(0) = 0$.
 - **2.2** A car of mass *m* travelling with speed 3v, collides with a second car of mass 2m travelling in the same direction with speed *v* along a straight road, and they stick together. Calculate the loss δK of kinetic energy in the collision.
 - **2.3** Vibrations u(x, t) of a string satisfy the equation $4 \partial^2 u / \partial t^2 = 25 \partial^2 u / \partial x^2$. Find *u* if the initial conditions are u(x, 0) = 0 and $\partial u(x, 0) / \partial t = 20 \sin^2 x$.
- **Q3 3.1** A particle of unit mass and charge moves in an electric field $\mathbf{E} = E\mathbf{j}$ and a magnetic field $\mathbf{B} = B\mathbf{k}$, where *E* and *B* are nonzero constants. Its position and velocity at time t = 0 are **0** and *u***i** respectively. Find the path $\mathbf{r}(t)$ of the particle.
 - **3.2** A particle of mass m_1 is moving along the *x*-axis, and collides elastically with a particle of mass m_2 stationary at the origin. Afterwards, the m_1 -particle is moving along the *y*-axis. Find the angle θ between the *x*-axis and the direction of the m_2 -particle after the collision. You may assume that $m_2 > m_1$.

age number		Exam code
3 of 3		MATH1607-WE01
	I	I
	J	L

- **Q4 4.1** A particle of unit mass moves in an attractive central force of magnitude c/r^2 where *c* is a constant. Let **L** denote its angular momentum. Prove that the vector $\mathbf{w} = \dot{\mathbf{r}} \times \mathbf{L} + h(r) \mathbf{r}$ is constant in time, for some function h(r) which you should determine.
 - **4.2** A compound pendulum consists of a light rigid rod of length *L*, pivoted at one end, and free to rotate in a vertical plane with gravity (acceleration *g*) acting downwards. A mass *m* is attached at the other end, and a mass 3m is attached a distance L/3 from the pivot.
 - (i) At what distance *D* from the pivot is the centre of mass of the system?
 - (ii) What is the moment of inertia I of the system about its pivot?
 - (iii) The pendulum begins in its stable equilibrium position, and the mass at the end is given an initial velocity *u*. What value of *u* causes the rod to reach a horizontal position, but no higher?
 - (iv) What is the period *P* of small oscillations about the stable equilibrium position?
- **Q5 5.1** A unit-mass particle moves along the *x*-axis, and is acted on by a force derived from the potential energy $V(x) = ax^2(b x)$, where *a* and *b* are positive constants.
 - (i) Determine the angular frequency ω of small oscillations about the stable equilibrium of the particle.
 - (ii) If the particle is released from rest at x = -b, compute its speed v as it passes x = 0.
 - (iii) If the particle starts at x = 0 with initial speed u, how large does u have to be in order for the particle to escape to $x = \infty$?
 - **5.2** A mass *m* is attached to a light string which is wrapped around the rim of a wheel of radius *R* and does not slip. Gravity pulls the mass down with force *mg*, and this causes the wheel to rotate about the fixed horizontal axis through its centre. The mass starts at rest, and then falls a distance *D* in time *T*. Compute the moment of inertia *I* of the wheel, in terms of *m*, *R*, *D*, *T* and *g*.