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Q1 Consider a system described by the Lagrangian

L =
1

2
(q̇2

1 + q̇2
2) + 2 cos(q1 − q2)− sin(q1q2) .

1.1 Write down the equations of motion for the system. (You do not need to solve
them.)

1.2 Show that q1(t) = q2(t) = 0 is a solution of the equations of motion.

1.3 Assuming that the system starts at rest from the position q1(0) = q2(0) = ε
for some 0 < ε� 1, find q1(t) and q2(t) to first order in ε.

Consider now the quantum mechanical simple harmonic oscillator of angular fre-
quency ω and mass m. The annihilation operator is defined in terms of the position
operator x̂ and momentum operator p̂ as

â =
1√

2m~ω
(mωx̂+ ip̂) .

1.4 Show that the wave function

ψ0(x) = C exp

(
−mωx

2

2~

)
.

is the ground state wave function at a fixed moment in time. Also compute
the constant C, and show how this wave function evolves in time, that is,
find ψ0(x, t).

1.5 Prove that the wave function

ψ(x, t) = e−λ
2/2 exp

(
λâ†
)
ψ0(x, t) ,

for some real constant λ and φ0(x, t) as above, satisfies the equation

âψ(x, t) = λψ(x, t) .

Q2 Consider a system described by a Hamiltonian of the form

H =
f(x2 + y2 + z2)

2
(p2
x + p2

y + p2
z) + V (ax2 + y2 + z2, bt)

with Poisson brackets {x, px} = {y, py} = {z, pz} = 1 and all other Poisson brackets
vanishing. Here a, b ∈ R are two constants, and f and V are functions of one and
two variables respectively.

2.1 Determine for which values of a, b the quantity Q = xpy − ypx is conserved,
assuming that V is generic.

2.2 Determine for which values of a, b the Hamiltonian H is conserved, assuming
that V is generic.

2.3 Find the Lagrangian Lab associated to the Hamiltonian above (for generic val-
ues of a and b).

2.4 Compute the infinitesimal transformation of Lab generated by Q. Show that
for the values of a, b you found in 2.1 Q generates a symmetry.
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2.5 Coming back to the Hamiltonian formalism, choose

V (ax2 + y2 + z2, bt) =
1

2
(x2 + y2 + z2)

(note that in particular we set a = 1) so that

H =
f(x2 + y2 + z2)

2
(p2
x + p2

y + p2
z) +

1

2
(x2 + y2 + z2) .

Find another conserved charge P such that {P,H} = 0 but {P,Q} 6= 0. Show,
without computing any Poisson bracket explicitly, that {P,Q} is conserved.

Q3 We have an infinite string made of two semi-infinite pieces joined at x = 0. The
two pieces have the same constant tension τ , but the piece at x < 0 has constant
density ρ− while the piece at x > 0 has constant density ρ+. The corresponding
Lagrangian density is thus

L =
1

2
ρ±(ut)

2 − 1

2
τ(ux)

2

with the plus sign chosen for x > 0 and the minus sign for x < 0.

Consider the monochromatic wave ansatz given by

u(x, t) =

{
<
(
(eik−x +Re−ik−x)e−ik−c−t

)
for x < 0

<
(
Teik+xe−ik+c+t

)
for x > 0

where <(z) denotes the real part of z and k± are real constants. We have also
defined c2± = τ/ρ±.

3.1 Provide, without doing any calculations specific to this example but explaining
your reasoning, the values for R and T that you expect to obtain in the limits
c+/c− → 1 and c+/c− → 0.

3.2 Solve for R and T in terms of c+, c−. Here you should take c+ and c− arbitrary,
not just the limiting values considered in the previous part.

3.3 Show that the results you obtained in the previous part are compatible with
the expected values you argued for in the first part, by taking the appropriate
limits.

3.4 We now specialize to the case c− = c+, and set, at t = 0, a initial configuration
at rest of the form

u(x, 0) =

{
e−2x/(x2−1) if x ∈ [−1, 1] ,

0 otherwise.

Find u(x, t) for all t. Is this a monochromatic wave? Justify your answer.
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Q4 Consider two non-interacting quantum particles of mass m = 1/2, with coordi-
nates x1 and x2 respectively, on the real line, x1 ∈ R and x2 ∈ R. Use units for
which ~ = 1.

4.1 The plots below are snapshots of the probability density P (x1, x2, t) at times
t = 0, 1, 2, 3 for the system described by a particular wave function ψ(x1, x2, t),
with x1 along the horizontal axis, and lighter colours corresponding to larger
values of P (x1, x2, t). Which dynamical situation does this wave function de-
scribe? How would the plots change (qualitatively) if the particles were inter-
acting?

Now restrict the system to a one-dimensional unit-size box, so that 0 < xi < 1 for
both i = 1, 2.

4.2 Write down the expansion of a generic wave function for the two particles in
the box, on a basis of normalised energy eigen-wavefunctions for this system.

4.3 Assume that at a particular time, the system is in the state described by the
wave function

ψ(x1, x2, t = t0) = C

[
sin (2πx1) sin (2πx2) +

1

2
sin (3πx1) sin (πx2)

]
, (1)

for some normalisation constant C. Compute C.

4.4 Determine the probability density P (x1) for the system described by this wave
function.

4.5 At t = t0, the position of particle 2 is measured, and found to be x2 = 1/4.
Describe what you now know about the wave function, and give the probability
density P (x1) just after this measurement.

4.6 What is the expectation value 〈x1〉 before the measurement, when the system
is described by the wave function in equation (1)? Does the measurement of
the position of particle 2 change this? Motivate your answer.

Q5 5.1 Consider a unit-mass quantum mechanical particle in a box 0 < x < L. We
usually impose that the wave function vanishes at x = 0 and x = L, but there
are more general boundary conditions such that the momentum operator is
Hermitian. Show that

〈p̂ψ1, ψ2〉 = 〈ψ1, p̂ψ2〉

for the more general boundary condition that

ψi(x = 0) = eiθψi(x = L) ,

where θ ∈ R.
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5.2 Impose periodic boundary conditions ψ(x = 0) = ψ(x = L) (but typically non-
zero). Show that χm(x) = C exp(2πimx/L) (withm an integer) are momentum
eigenfunctions with eigenvalues pm, and find C. Using these eigenfunctions, we
can use [x̂, p̂] = i~ to ‘prove’ that 1 = 0, as follows:

i~ = i~〈χm, χm〉 = 〈χm, [x̂, p̂]χm〉 = 〈χm, x̂p̂χm〉 − 〈χm, p̂x̂χm〉

= 〈χm, x̂p̂χm〉 − 〈p̂χm, x̂χm〉 = (pm − pm)〈χm, x̂χm〉 = 0 ,

where we used that p̂ is Hermitian to go from the first to the second line. Make
explicit what went wrong here.

5.3 Revert to ‘standard’ boundary conditions ψ(x = 0) = ψ(x = L) = 0. Assume
the system is described by the normalised wave function

ψ(x) =

√
30

L5
(L− x)x .

Decompose this function on the basis of energy eigenfunctions, that is, find the
cn in

ψ(x) =
∑
n

cnφn(x) , with φn(x) =

√
2

L
sin
(nπx
L

)
.

You may use (and do not have to prove)∫ L

0

x sin
(nπx
L

)
dx = −L

2

nπ
(−1)n ,∫ L

0

x2 sin
(nπx
L

)
dx = − L3

n3π3

(
2 + (−1)n(−2 + n2π2)

)
.

The function ψ(x) is even around x = L/2; what does this mean for the
coefficients cn?

5.4 Compute 〈E2〉 using the basis decomposition you just found, that is, compute

〈E2〉 =
∑
n=0

|cn|2(En)2 ,

where En are the energy eigenvalues for the eigenfunctions φn(x). You may
use (and do not have to prove) ∑

n odd

1

n2
=
π2

8
.

5.5 You may have been tempted to compute the expectation value of E2 by com-
puting

〈ψ,E2ψ〉 = 〈ψ,H2ψ〉 =

(
~2

2m

)2 ∫ L

0

ψ(x)
d4

dx4
ψ(x)dx ,

but then the result comes out as zero. Which of the two computations of 〈E2〉
do you think is correct, and why?
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