

EXAMINATION PAPER

Examination Session: May/June

2021

Year:

Exam Code:

MATH2581-WE01

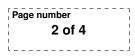
Title:

Algebra II

Time (for guidance only):	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Instructions to Candidates:	tes: Credit will be given for your answers to all questions. All questions carry the same marks.			
	Please start each question on a new Please write your CIS username at th	SIS username at the top of each page.		
	To receive credit, your answers mus explain your reasoning.			
		.		

Revision:



Q1 Let

$$R = \{ \frac{a}{5^r 7^s} \in \mathbb{Q} \mid a \in \mathbb{Z}, \ r, s \in \mathbb{Z}_{\geq 0} \}.$$

- **1.1** Show that R, with binary operations inherited from \mathbb{Q} , constitutes a ring.
- **1.2** Is R an integral domain? (Provide your reasoning!)
- ${\bf 1.3}$ Consider the subset

$$S = \{ \frac{3a}{5^r 7^s} \in \mathbb{Q} \mid a \in \mathbb{Z}, \ r, s \in \mathbb{Z}_{\geq 0} \} \subset R.$$

Show that S is a proper ideal of R (i.e. an ideal that is neither $\{0_R\}$ nor R), and determine whether S is maximal or not.

- **1.4** Show that, for any $n \ge 1$, there is a polynomial of degree n which is a unit in the ring $(\mathbb{Z}/25)[x]$.
- **1.5** Determine all elements in $\mathbb{Z}[\sqrt{-13}]$ that divide 14.
- **1.6** Denote by d_1d_2 the two digit integer at the end of your (6 characters long) anonymous code, and let $r \in \{0, 1, 2\}$ be the remainder of the division of d_1d_2 by 3.

Decompose the polynomial

$$x^{4} + (2+4r)x^{2} + 4rx + (3+4(r-4r^{2}))$$
 in $(\mathbb{Z}/11)[x]$

into irreducible factors. (Justify irreducibility for each factor.)

- **Q2** Let $d \in \mathbb{Z}_{>0}$ and $S = \mathbb{Z}[\sqrt{-d}]$, and let p be an odd prime.
 - **2.1** For $n \in \mathbb{Z}$ define the maps $\varphi_n : S \to \mathbb{Z}/p$, given for $a, b \in \mathbb{Z}$ by

$$\varphi_n(a+b\sqrt{-d}) = a^p + nb^p \pmod{p}$$
.

Characterise those $n \in \mathbb{Z}$ for which φ_n is a ring homomorphism, in terms of d and p.

(Justify your claim.)

- **2.2** Let $R = (\mathbb{Z}/13)[x]$. Is the ideal $I = (x^2 + \overline{2}x - \overline{3}, x^3 + \overline{7})_R$ a principal ideal?
- For the remainder of this question, let $R = \mathbb{Z}[\sqrt{-5}]$ and consider $I = (2)_R$.
- **2.3** Determine how many cosets there are in R with respect to I, and write down a representative of each of these cosets.
- **2.4** For each of the following statements either prove it or give a reason why it is not correct:
 - (i) R/I is a commutative ring.
 - (ii) Every non-zero element in R/I has an inverse.
 - (iii) There are no zero divisors in R/I.
 - (iv) R/I is isomorphic to a product of two non-trivial rings.

Q3 Let $I = (4 + 3\sqrt{7})_R$ and $J = (5 - 4\sqrt{7})_R$ be ideals in $R = \mathbb{Z}[\sqrt{7}]$.

- **3.1** Show that $I + J = \mathbb{Z}[\sqrt{7}]$.
- **3.2** Determine whether the following statement is correct or incorrect: The quotient ring $\mathbb{Z}[\sqrt{7}]/(64 + \sqrt{7})_R$ is isomorphic to the direct product of the rings $\mathbb{Z}[\sqrt{7}]/I$ and $\mathbb{Z}[\sqrt{7}]/J$. (Carefully cite any result that you use.)
- **3.3** Suppose the group G acts on a finite non-empty set X. For each of the following two statements give a proof or a counterexample.
 - (i) The stabilisers of two elements in X in the same orbit under G have the same size.
 - (ii) The orbits under G of any two elements in X have the same size.
- **3.4** Write down all the subsets of $S_4 \times \mathbb{Z}/2$, up to swapping letters in S_4 , that constitute a subgroup which is isomorphic to the Klein 4-group. Moreover, choose one of these subgroups, say H, and determine whether each left coset with respect to H is also a right coset.
- **Q4 4.1** For each of the following pairs of groups, either prove that they are isomorphic or provide a reason why they are not.

a)
$$D_3 \times D_3$$
 and $A_4 \times \mathbb{Z}/3$, b) $(\mathbb{Z}/24)^{\times}$ and $\mathbb{Z}/2 \times \mathbb{Z}/4$.

4.2 Which of the following permutations σ_i , if any, are conjugate in S_6 ?

 $\sigma_1 = (3\,4\,5\,1)(1\,6\,5)(1\,2), \ \sigma_2 = (1\,2)(1\,6\,5)(3\,4\,5\,1), \ \sigma_3 = (2\,3\,5)(1\,4\,6)\,.$

Moreover, write σ_1 and σ_2 as a product of 3-cycles or show that it is not possible to do so.

Finally, if σ_i and σ_j are conjugate in S_6 for $i \neq j$ then find a $g \in S_6$ such that $\sigma_i = g\sigma_j g^{-1}$.

- **4.3** Classify all the abelian groups of order 2025 and determine the number of elements of precise order 3 for each.
- **4.4** Let p be an odd prime. Write down all the possible groups, up to isomorphism, that can occur as *proper* subgroups of groups of order $2p^2$.
- **Q5** 5.1 Show that the centre Z(G) of a group G is a subgroup of G. Also show that it is normal in G.
 - **5.2** Determine the centre of $GL_2(\mathbb{Z}/5)$.
 - **5.3** Show that the order of any conjugacy class in G divides #G. (Carefully formulate any results that you use.)
 - **5.4** Let G be a *non-abelian* group of order 16. Determine all the possible sizes that the centre of G can have, and give an example for each of these cases.
 - **5.5** Let $n \ge 5$, and let *H* be a normal subgroup of A_n which contains a 5-cycle. For each of the following two statements give a proof or a counterexample:
 - (i) Under the above assumptions H contains a 3-cycle.

(ii) Under the above assumptions, assuming also that H contains a 3-cycle, then H must agree with A_n .

Carefully cite any results from lectures that you use.