

## **EXAMINATION PAPER**

Examination Session: May/June

2021

Year:

Exam Code:

MATH2647-WE01

Title:

Probability II

| Time (for guidance only):     | 2 hours |                                                                                         |
|-------------------------------|---------|-----------------------------------------------------------------------------------------|
| Additional Material provided: |         |                                                                                         |
| Materials Permitted:          |         |                                                                                         |
| Calculators Permitted:        | Yes     | Models Permitted: There is no restriction on the model of calculator which may be used. |

| Instructions to Candidates: | Credit will be given for your answers to all questions.<br>All questions carry the same marks.       |                                 |         |  |
|-----------------------------|------------------------------------------------------------------------------------------------------|---------------------------------|---------|--|
|                             | Please start each question on a new page.<br>Please write your CIS username at the top of each page. |                                 | h page. |  |
|                             | To receive credit, your answers mus explain your reasoning.                                          | wers must show your working and |         |  |
|                             |                                                                                                      |                                 |         |  |
|                             |                                                                                                      |                                 |         |  |

**Revision:** 

- **Q1** A random symbol generator produces each of 10 digits and each of 26 letters of the latin alphabet with positive probability. Assuming that the individual outcomes are independent, let *M* be event that an infinite sequence of such symbols contains the word MATH2647 infinitely often.
  - **1.1** Find the probability of *M* using a suitable monotone approximation.
  - **1.2** Find the probability of *M* using the Borel-Cantelli lemma.

In your answer you should clearly state and carefully apply every result you use.

**Q2** An XOR gate adds bits according to the following rules:

$$0 + 0 = 1 + 1 = 0$$
,  $1 + 0 = 0 + 1 = 1$ .

Suppose that random bits  $(B_k)_{k=1}^n$  are independent and have a common distribution  $P(B_k = 1) = p = 1 - P(B_k = 0)$ , where  $0 . Write <math>S_n$  for the result of the sum of these bits using XOR gates, and let  $p_n$  be the probability of the event  $\{S_n = 1\}$ , equivalently,

 $p_n = P($ the sequence  $(B_k)_{k=1}^n$  contains an odd number of 'ones' ).

- **2.1** Compute  $p_1$  and  $p_2$ .
- **2.2** Show that, with properly defined  $p_0$ , we have  $p_n = p + (1 2p) p_{n-1}$  for all  $n \ge 1$ .
- **2.3** Use generating functions to derive a closed formula for  $p_n$ , and check that it gives correct values for n = 0, 1, 2.
- **2.4** Find  $\lim_{n \to \infty} p_n$  and explain your result.
- Q3 Consider a Markov chain with state space {1, 2, 3, 4} and the transition matrix

$$\mathbf{P} = \begin{pmatrix} 0 & 1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 & 0 \\ 1/2 & 1/2 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 \end{pmatrix} \, .$$

- **3.1** Describe the class structure of this Markov chain and determine the period of each state.
- **3.2** Find all stationary distributions for this Markov chain.
- **3.3** Find a closed expression in terms of powers of the eigenvalues of **P** for the *n*-step transition probabilities  $p_{11}^{(n)}$  and  $p_{12}^{(n)}$ .
- **3.4** Deduce closed expressions in terms of powers of the eigenvalues of **P** for the *n*-step transition probabilities  $p_{13}^{(n)}$  and  $p_{14}^{(n)}$ , where n > 0.
- **3.5** Classify all states of this Markov chain into transient and recurrent.

In your answer you should clearly state and carefully apply every result you use.





**Q4** For real  $a_n > 0$  and  $p_n \in (0, 1)$ , let  $(X_n)_{n>1}$  be random variables such that

$$P(X_n = a_n) = p_n = 1 - P(X_n = 0).$$

For each of the following claims, prove the result if it is correct, or find a counterexample otherwise:

**4.1** If  $a_n \to 0$ , then  $X_n \to 0$  in  $L^r$ , for some r > 0, as  $n \to \infty$ .

**4.2** If  $a_n \to 0$ , then  $X_n \to 0$  in probability as  $n \to \infty$ .

**4.3** If  $a_n \rightarrow 0$ , then  $X_n \rightarrow 0$  almost surely as  $n \rightarrow \infty$ .

**4.4** If  $p_n \rightarrow 0$ , then  $X_n \rightarrow 0$  in  $L^r$ , for some r > 0, as  $n \rightarrow \infty$ .

**4.5** If  $p_n \rightarrow 0$ , then  $X_n \rightarrow 0$  in probability as  $n \rightarrow \infty$ .

- **4.6** If  $p_n \rightarrow 0$ , then  $X_n \rightarrow 0$  almost surely as  $n \rightarrow \infty$ .
- **4.7** If  $p_n \to 0$  and the variables  $X_n$  are independent, then  $X_n \to 0$  in  $L^r$ , for some r > 0, as  $n \to \infty$ .
- **4.8** If  $p_n \to 0$  and the variables  $X_n$  are independent, then  $X_n \to 0$  in probability as  $n \to \infty$ .
- **4.9** If  $p_n \to 0$  and the variables  $X_n$  are independent, then  $X_n \to 0$  almost surely as  $n \to \infty$ .

In your answer you should clearly state and carefully apply any result you use.