

EXAMINATION PAPER

Examination Session: May/June

2021

Year:

Exam Code:

MATH3021-WE01

Title:

Differential Geometry III

Time (for guidance only):	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Credit will be given for your answers to all questions. All questions carry the same marks.	
Please start each question on a new page. Please write your CIS username at the top of each page.	
To receive credit, your answers must show your working and explain your reasoning.	

Revision:

Exam code MATH3021-WE01

Q1 Let $\boldsymbol{\alpha} : \mathbb{R} \to \mathbb{R}^3$ be the space curve

$$\boldsymbol{\alpha}(t) = (t, \sinh t, \cosh t).$$

- **1.1** Is α smooth? Is α regular? Is α simple?
- **1.2** Compute the curvature and torsion of α .
- **1.3** Let $S = \{(x, y, z) \in \mathbb{R}^3 : z^2 y^2 = 1, z > 0\}$. Show that *S* is a regular surface and that α is a curve in *S*. Compute the geodesic curvature of α .
- **1.4** Using the parametrisation $\mathbf{x}(u, v) = (u, v, \sqrt{1 + v^2})$, compute the mean curvature of *S*.
- **Q2** 2.1 Let $\alpha : I \to \mathbb{R}^2$ be a smooth unit speed curve with

$$\boldsymbol{\alpha}'(s) = (\cos\theta(s), \sin\theta(s))$$

and assume that $\theta : I \to \mathbb{R}$ is also smooth. Find the curvature $\kappa : I \to \mathbb{R}$ of α as an expression in the function θ .

- **2.2** Let $\boldsymbol{\beta} : \boldsymbol{I} \to \mathbb{R}^2$ be a smooth unit speed curve with nowhere vanishing curvature function κ . Let $\boldsymbol{e} : \boldsymbol{I} \to \mathbb{R}^2$ be its evolute. Assume that \boldsymbol{e} is constant, that is, there exists $\boldsymbol{p}_0 \in \mathbb{R}^2$ with $\boldsymbol{e}(\boldsymbol{s}) = \boldsymbol{p}_0$ for all $\boldsymbol{s} \in \boldsymbol{I}$. Show that the trace of $\boldsymbol{\beta}$ is contained in a circle centred at \boldsymbol{p}_0 and find the radius of this circle.
- **2.3** Let $\gamma : I \to \mathbb{R}^3$ be a smooth unit speed curve with principal normal *n* and binormal *b*. Assume that there exist smooth functions $f, g : I \to \mathbb{R}$ with

$$\boldsymbol{\gamma}(s) = f(s)\boldsymbol{n}(s) + g(s)\boldsymbol{b}(s).$$

Show that there exists c > 0 such that $f^2(s) + g^2(s) = c$ for all $s \in I$. Express κ and τ in terms of f, g and g'. Show that f(s) < 0 for all $s \in I$ and that $\kappa(s) \ge 1/\sqrt{c}$ for all $s \in I$.

Q3 Consider the parametrised surface \boldsymbol{x} : $\boldsymbol{U} = (0, 1) \times (0, 1) \rightarrow \mathbb{R}^3$,

$$\boldsymbol{x}(u,v) = \left(u - \frac{u^3}{3} + uv^2, v - \frac{v^3}{3} + vu^2, u^2 - v^2\right).$$

- **3.1** Calculate the coefficients of the first fundamental form with respect to *x*.
- **3.2** Calculate a Gauss map $N : \mathbf{x}(U) \rightarrow S^2$.
- **3.3** Calculate the coefficients of the second fundamental form with respect to *x*.
- **3.4** Calculate the principal curvatures and determine the umbilical points.

Q4 Consider the upper half plane model $\mathbb{H}^2 = \{(u, v) \in \mathbb{R}^2 : v > 0\}$ of the hyperbolic plane, with first fundamental form given by

$$E(u, v) = \frac{1}{v^2}, \quad F(u, v) = 0, \quad G(u, v) = \frac{1}{v^2}.$$

Exam code

MATH3021-WE01

- **4.1** Describe the shape of all geodesics in \mathbb{H}^2 (you do not need to prove this).
- **4.2** Let a < b and c > 0. Calculate the hyperbolic area of the subset

$$R := \{(u, v) \in \mathbb{H}^2 : a \leq u \leq b, v \geq c\}.$$

- **4.3** Calculate the geodesic curvature of the curve $\gamma : [a, b] \to \mathbb{H}^2$, $\gamma(t) = (t, c)$ for some constant c > 0.
- **4.4** State the Gauss-Bonnet Theorem and explain all involved terms. Using the fact that \mathbb{H}^2 has constant Gauss curvature -1 (without proof), verify in full detail that the Gauss-Bonnet Theorem holds for the set *R*.
- **Q5** Let $\mathbf{x} : U \to \mathbb{R}^3$ be a global parametrisation of a regular surface S and $\mathbf{N} : U \to S^2$ be a unit length normal, that is $\mathbf{N}(u, v) \perp T_{\mathbf{x}(u,v)}S$ and $||\mathbf{N}(u, v)|| = 1$ for all $(u, v) \in U$. For every $t \in \mathbb{R}$, we consider the set $S_t \subset \mathbb{R}^3$, defined as the image of the global parametrisation

$$\boldsymbol{y}(\boldsymbol{u},\boldsymbol{v}) = \boldsymbol{x}(\boldsymbol{u},\boldsymbol{v}) + t\boldsymbol{N}(\boldsymbol{u},\boldsymbol{v}).$$

We will assume that, for |t| > 0 small, the sets S_t are again regular surfaces.

5.1 Prove the identity

$$\frac{\partial \boldsymbol{N}}{\partial u} \times \frac{\partial \boldsymbol{N}}{\partial v} = K \boldsymbol{x}_{u} \times \boldsymbol{x}_{v},$$

where K is the Gaussian curvature of S, viewed as a function on U.

5.2 Let E, F, G be the coefficients of the first fundamental form of y. Express

$$\frac{\partial E}{\partial t}\Big|_{t=0}, \quad \frac{\partial F}{\partial t}\Big|_{t=0}, \quad \frac{\partial G}{\partial t}\Big|_{t=0}$$

in terms of the coefficients of the second fundamental form of *x*.

5.3 Show that

$$\boldsymbol{y}_{u} \times \boldsymbol{y}_{v} = (1 - 2Ht + Kt^{2})\boldsymbol{x}_{u} \times \boldsymbol{x}_{v},$$

where H is the mean curvature of the surface S, viewed as a function on U.

5.4 Assume that the Gauss curvature *K* and the mean curvature *H* of *S* are globally bounded. Express, for small |t| > 0, the Gauss curvature of the regular surface *S*_t in terms of *t*, the Gauss curvature *K* and the mean curvature *H* of *S*.