

EXAMINATION PAPER

Examination Session: May/June

2021

Year:

Exam Code:

MATH3031-WE01

Title:

Number Theory III

Time (for guidance only):	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Instructions to Candidates:	Credit will be given for your answers to all questions. All questions carry the same marks.
	Please start each question on a new page.
	Please write your CIS username at the top of each page.
	To receive credit, your answers must show your working and explain your reasoning.

Revision:

- **Q1 1.1** Let *K* be a number field and write \mathcal{O}_K for its ring of integers. Which of the following statements are true? Justify your answer.
 - (i) Let $[K : \mathbb{Q}] = 2$ and assume that for an $\alpha \in K$ with $\alpha \notin \mathbb{Q}$ we have $Tr_{K/\mathbb{Q}}(\alpha) \in \mathbb{Z}$. Then $\alpha \in \mathcal{O}_K$.
 - (ii) Let $[K : \mathbb{Q}] = 2$ and assume that for an $\alpha \in K$ we have $Tr_{K/\mathbb{Q}}(\alpha) \in \mathbb{Z}$ and $N_{K/\mathbb{Q}}(\alpha) \in \mathbb{Z}$. Then $\alpha \in \mathcal{O}_K$.
 - (iii) Let $[K : \mathbb{Q}] = 3$ and assume that for an $\alpha \in K$ we have $Tr_{K/\mathbb{Q}}(\alpha) \in \mathbb{Z}$ and $N_{K/\mathbb{Q}}(\alpha) \in \mathbb{Z}$. Then $\alpha \in \mathcal{O}_K$.
 - (iv) Let *I* and *J* be two ideals in \mathcal{O}_K and assume that $I + J = \mathcal{O}_K$. Then there exist $n, m \in \mathbb{N}$, such that $I^n + J^m \neq \mathcal{O}_K$.
 - **1.2** (i) Find the fundamental unit of $\mathbb{Q}(\sqrt{10})$. Show your work.
 - (ii) Find all solutions $(x, y) \in \mathbb{Z} \times \mathbb{Z}$, x, y > 1, to the equation $x^2 10y^2 = 1$. Show your work.
 - (iii) Show that for any integer N > 1, there exist $a, b \in \mathbb{Z}$ with a, b > 0 such that

$$\left|\sqrt{10}-\frac{a}{b}\right|<\frac{1}{N}.$$

- **Q2 2.1** Let $f(x) = x^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + ... + a_1x + a_0 \in \mathbb{Z}[x]$. Let *p* be a prime factor of a_0 and write $r \in \mathbb{N}$ such that p^r divides a_0 and p^{r+1} does not. Assume further that all a_i for i = 1, ..., n-1 are divisible by p^r and that the polynomial f(x) is irreducible over \mathbb{Q} . Denote by *R* the ring of integers of $\mathbb{Q}(\alpha)$, where $\alpha \in \mathbb{C}$ such that $f(\alpha) = 0$. Show that:
 - (i) There is an ideal *I* in *R* such that $(p^r)_R = I^n$.
 - (ii) If *r* and *n* are relatively prime then there exists an ideal *J* in *R* such that $(p)_R = J^n$.
 - **2.2** Let *K* be a number field and write \mathcal{O}_{K} for its ring of integers.
 - (i) Let *I* be a non-zero proper ideal in $\mathcal{O}_{\mathcal{K}}$. Show that there exists an element $\gamma \in \mathcal{K}$ such that $\gamma \notin \mathcal{O}_{\mathcal{K}}$ and $(\gamma)_{\mathcal{O}_{\mathcal{K}}} I \subset \mathcal{O}_{\mathcal{K}}$.
 - (ii) Let *F* be a field extension of *K* with [F : K] finite, and write \mathcal{O}_F for the ring of integers of *F*. Let *I* be a proper ideal of \mathcal{O}_K , and consider the set

$$\mathfrak{I} := \left\{ \sum_{i=1}^{n} a_{i} r_{i} \mid n \in \mathbb{N}, a_{i} \in I, r_{i} \in \mathcal{O}_{F} \right\}.$$

- A. Show that \mathfrak{I} is an ideal in \mathcal{O}_F .
- B. Show that $\mathfrak{I} \neq \mathcal{O}_F$.
- C. Show that we may select *F* such that \Im is a principal ideal in \mathcal{O}_F .
- **Q3 3.1** Let $i \in \mathbb{C}$ with $i^2 = -1$. Is the ring $\mathbb{Z}[2i] := \{a + 2bi \mid a, b \in \mathbb{Z}\}$ a UFD? Justify your answer.
 - **3.2** Let *d* be a square-free integer with $d \equiv 1 \pmod{4}$. Write $K = \mathbb{Q}(\sqrt{d})$, and denote by *R* the ring of integers of *K*. For *p* an odd prime, show that if $(p)_{\mathbb{Z}}$ is not inert in *R*, then there exists an integer *b* with $0 \le b \le p 1$ such that *p* divides $N_{K/\mathbb{Q}}(b + \frac{1+\sqrt{d}}{2})$.
 - **3.3** Let $K = \mathbb{Q}(\sqrt{-65})$, and write *R* for its ring of integers. Factorise the ideal $(75 15\sqrt{-65}, -195 15\sqrt{-65})_R$ into a product of prime ideals in *R*.

Page number	Exam code
4 of 4	MATH3031-WE01

- **Q4** Let $K = \mathbb{Q}(\sqrt{7}, \sqrt{10})$ and fix any $\alpha \in \mathcal{O}_K$ such that $K = \mathbb{Q}(\alpha)$. Let $f(x) \in \mathbb{Z}[x]$ be the irreducible monic polynomial for which $f(\alpha) = 0$. Throughout this question, given a polynomial $g(x) \in \mathbb{Z}[x]$ let $\overline{g}(x)$ denote the reduction of this polynomial modulo 3. Namely, $\overline{g}(x) \in (\mathbb{Z}/3)[x]$.
 - **4.1** Compute $N_{\mathcal{K}}(\sqrt{7})$ and $\operatorname{Tr}_{\mathcal{K}}(\sqrt{7})$.
 - **4.2** Show that $g(\alpha)$ is divisible by 3 in $\mathbb{Z}[\alpha]$ if and only if $\overline{f}(x) \mid \overline{g}(x)$ in $(\mathbb{Z}/3)[x]$. You may use here that the ring $\mathbb{Z}[\alpha]$ is isomorphic to the ring $\mathbb{Z}[x]/(f(x))_{\mathbb{Z}[x]}$ via the evaluation at α map.
 - 4.3 Let

$$\begin{aligned} \alpha_1 &= (1 + \sqrt{7})(1 + \sqrt{10}) \\ \alpha_2 &= (1 + \sqrt{7})(1 - \sqrt{10}) \\ \alpha_3 &= (1 - \sqrt{7})(1 + \sqrt{10}) \\ \alpha_4 &= (1 - \sqrt{7})(1 - \sqrt{10}), \end{aligned}$$

be in $\mathcal{O}_{\mathcal{K}}$. Prove that $3 \mid \alpha_i \alpha_j$ for any $i \neq j$, but 3 does not divide any power of α_i^n for any i = 1, 2, 3, 4 and any $n \geq 1$.

(Hint: $\alpha_1, ..., \alpha_4$ are related to each other in a special way. Can you spot this relation and use it to compute traces?)

- **4.4** Let $\alpha_1, ..., \alpha_4$ be as defined above in Question 4.3. Suppose $\alpha_i \in \mathbb{Z}[\alpha]$ for each i = 1, ..., 4, then we must have $\alpha_i = f_i(\alpha)$ for some polynomials $f_i(x) \in \mathbb{Z}[x]$. Show that $\overline{f}(x) | \overline{f_i}(x)\overline{f_j}(x)$ for $i \neq j$ but $\overline{f}(x)$ does not divide $\overline{f_i}(x)^n$ in $(\mathbb{Z}/3)[x]$, for any i = 1, 2, 3, 4 and any $n \ge 1$.
- **4.5** Conclude that $\overline{f}(x)$ has at least four distinct monic irreducible factors in $(\mathbb{Z}/3)[x]$ and use it to prove that $\mathcal{O}_{\mathcal{K}} \neq \mathbb{Z}[\alpha]$ for any $\alpha \in \mathcal{O}_{\mathcal{K}}$. Give careful reasoning. (Hint: Recall that $(\mathbb{Z}/3)[x]$ is a UFD.)
- **Q5 5.1** Compute the group structure of the class group of $K = \mathbb{Q}(\sqrt{-33})$. Give careful reasoning.
 - **5.2** Let $K = \mathbb{Q}(\alpha)$ and $R = \mathcal{O}_K = \mathbb{Z}[\alpha]$, where $\alpha^3 = \alpha + 1$. Factorise the ideal $(345)_R$, as a product of prime ideals in *R*.
 - **5.3** Let *p* be a prime such that $p \equiv 3 \mod 4$. Assume further that the class group of the field $K = \mathbb{Q}(\sqrt{p})$ is of odd order. Use this information to prove that there are infinitely many integers $a, b \in \mathbb{Z}$ satisfying

$$a^2 - pb^2 = (-1)^{(p+1)/4} 2.$$