

EXAMINATION PAPER

Examination Session: May/June

2021

Year:

Exam Code:

MATH3041-WE01

Title:

Galois Theory III

Time (for guidance only):	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Instructions to Candidates:	Credit will be given for your answers to all questions. All questions carry the same marks.
	Please start each question on a new page.
	Please write your CIS username at the top of each page.
	To receive credit, your answers must show your working and explain your reasoning.

Revision:

- **Q1** 1.1 Find the degree $[E : \mathbb{Q}]$, where $E = \mathbb{Q}(\sqrt[8]{2}, \sqrt[11]{5})$.
 - **1.2** Find a splitting field for the polynomial $F(X) = X^5 + X^4 + 1 \in \mathbb{F}_2[X]$.
 - **1.3** Find all subfields in $\mathbb{F}_{3^{24}}$.
 - **1.4** Find the minimal polynomial for $\alpha = \sqrt[3]{\sqrt{5}+1}$ over \mathbb{Q} .
- **Q2** 2.1 Suppose $L = \mathbb{Q}(\zeta)$, where $\zeta \in \mathbb{C}$ is a primitive 80-th root of unity. Use ζ to find a primitive 5-th root of unity $\eta_1 \in L$ and a primitive 16-th root of unity $\eta_2 \in L$ such that $\zeta = \eta_1 \eta_2$.
 - **2.2** For $\eta_1, \eta_2 \in \mathbb{Q}(\zeta)$ from Question 2.1 find the minimal polynomials for ζ over $\mathbb{Q}(\eta_1)$ and over $\mathbb{Q}(\eta_2)$.
 - **2.3** Find the Galois group of the polynomial $P(X) = X^3 2X + 2$ over $\mathbb{Q}(\sqrt{-19})$.
 - **2.4** Let *L* be the cyclotomic field $\mathbb{Q}(\zeta_{532})$. How many different subfields $E \subset L$ such that $[E : \mathbb{Q}] = 6$ are there?
- **Q3 3.1** Suppose *F* is a field of characteristic \neq 2 and *E* is a Galois extension of *F* such that Gal(*E*/*F*) = *Z*₂ × *Z*₂. Prove that there are *A*, *B* \in *F* such that $E = F(\sqrt{A}, \sqrt{B})$.
 - **3.2** Let *L* be a minimal normal over \mathbb{Q} field extension of $\mathbb{Q}(\Theta)$, where $\Theta = \sqrt{8 5\sqrt{2}}$. Find Gal(L/\mathbb{Q}).
 - **3.3** For the field *L* from Question 3.2, find all subfields $K \subset L$ such that $[K : \mathbb{Q}] = 2$ and $\text{Gal}(L/K) \simeq Z_2 \times Z_2$. Prove that there is a unique subfield K' of *L* such that $\text{Gal}(L/K') \simeq Z_4$.
 - **3.4** For each subfield *K* of the field *L* from Question 3.2 such that $Gal(L/K) = Z_2 \times Z_2$, find *A*, *B* \in *K* such that *L* = *K*(\sqrt{A} , \sqrt{B}).
- **Q4 4.1** Suppose $L = \mathbb{F}_{11}(X)$ and $K = \mathbb{F}_{11}(X^5 + X^{-5})$, where X is a variable. Prove that L/K is Galois and describe the group structure of Gal(L/K).
 - **4.2** Find all field extensions *E* of *K* in the field *L* from Question 4.1.
 - **4.3** Explain a construction of the field extension \mathbb{F}_8 of \mathbb{F}_2 (define the corresponding set of elements and operations: addition and multiplication).
 - **4.4** Find an irreducible polynomial P(X) of degree 3 in $\mathbb{F}_8[X]$.
- **Q5** Let *L* be a minimal normal over \mathbb{Q} field extension of $\mathbb{Q}(\sqrt[8]{2})$.
 - 5.1 Find L.
 - **5.2** Find generators and relations for $G = \text{Gal}(L/\mathbb{Q})$.
 - **5.3** Find all subfields $E \subset L$ such that $[E : \mathbb{Q}] = 2$.
 - **5.4** Find the number of subfields *E* in *L* such that Gal(L/E) is cyclic of order 4.