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Q1 1.1 A study conducted in central Virginia focused on the prevalence of obesity,
diabetes and other cardiovascular risk factors. We consider a subset of the
study’s data set, consisting of 103 individual records. The response variable
under consideration is glycosolated hemoglobin, which is a common diag-
nostic measure of diabetes (values greater than 7 indicate a positive diag-
nosis of the disease). We consider two explanatory variables on logarithmic
scale; namely, the ratio Cholesterol/HDL (HDL: High Density Lipoprotein)
and stabilised glucose levels.
Let Y denote the response glycosolated hemoglobin, X1 the logarithm of
Cholesterol/HDL and X2 the logarithm of stabilised glucose. Fitting the
model

yi = �1 + �2xi1 + �3xi2 + �i , for i = 1, ... , 103,

yields the following quantities:

�
X T X

��1
=

0
B@

0.41808 �0.00500 �0.08881
�0.00500 0.02301 �0.00616
�0.08881 �0.00616 0.02126

1
CA ,

X T Y = (2175.730 3236.672 10232.817)T .

We have assumed that the errors are independent and identically distributed,
following a normal distribution; namely, �i � N(0,�2). The error variance �2

estimate of the model is s2 = 1.51852.

(i) Find the 95% confidence intervals of �1, �2 and �3.
(ii) Suppose that we obtain new measurements from an individual within

the cohort of the study. The new measurements are x01 = 1.447 and
x02 = 4.682. Find:
A. a 95% confidence interval for the expected glycosolated hemoglobin

level E(y0 j x01 = 1.447, x02 = 4.682).
B. a 95% prediction interval for the individual’s glycosolated hemoglobin

level y0.

Show the required calculations in parts (i) and (ii).

1.2 Figure 1 is the output of using the R function boxcox{MASS} for a particular
Normal linear regression model. By eye, deduce a 95% confidence interval
for �. Does this suggest a need for a transformation to be applied to the
response? If yes, what transformation would you choose? What features
would suggest a logarithmic transformation as an appropriate one?
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Figure 1:

1.3 We consider four cases (Cases I, II, III, IV) where specific Normal linear
regression models are fitted against different data-sets. Figures 2a, 2b, 2c,
and 2d present diagnostic plots for Cases I, II, III, IV correspondingly. In
Figure 2b, the values in the horizontal axis refer to a potential explanatory
variable. For each case, explain if the corresponding plots indicate anything
meriting investigation, and if they do, explain how you would deal with it.
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(a) Case I
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(b) Case II
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(c) Case III
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Q2 Let X � N(0, 1) and Y = WX + 7, where the random variable W is independent
of X and has the following probability mass function:

W =

8<
:�1, with probability �,

1, with probability 1� �.

2.1 Consider the following cases

(i) � = 0.5;
(ii) � = 0.4,

and examine whether X and Y are correlated or not by calculating the cor-
responding covariance of X and Y under each case.
[Note: Take for granted that when X and W are independent X 2 and W are
also independent; formal proof of that is not required.]

2.2 What is the marginal distribution of Y and what are its parameters under
cases (i) and (ii) in 2.1?

2.3 Assume that you are given a univariate sample of size 20 which contains
samples from the marginal distribution of X as well as from the marginal
distribution of Y . You are asked to detect possible outliers based on Ma-
halanobis distances using all observations for estimating the sample mean
and the sample variance. The resulting squared Mahalanobis distances are
given below.

1 2 3 4 5 6 7 8 9 10
0.408 7.592 0.521 0.059 0.067 0.512 0.039 0.009 0.026 7.295
11 12 13 14 15 16 17 18 19 20
0.044 0.055 0.405 1.612 0.003 0.166 0.157 0.001 0.004 0.024

Test H0 : “samplei is an outlier” vs. H1 : “samplei is not an outlier” for
i = 1, ... , 20 using the chi-square distribution with one degree of freedom at
a significance level of 5%. Report the critical value and explain how the test
works. Which sample points are detected as outliers? Apply the Bonferroni
correction, explain how the test works in this case, and report the resulting
critical value. Which sample points are detected as outliers in this case?

2.4 You are subsequently informed that 90% of the samples in 2.3 originate
from the marginal distribution of X and that the remaining samples originate
from the marginal distribution of Y . Comment on the efficacy of the test you
implemented in 2.3 (without the Bonferroni correction) in view of the new
information. Would the efficacy of the test be affected if you were given only
the first 10 samples above and, if yes, how?
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Q3 3.1 Consider the simple linear model

yi = �1 + �2xi + �i ,

for i = 1, ... , n. Identify a case where the matrix X T X , where X is the n � 2
design matrix, does not have an inverse and, thus, least-squares estimation
does not lead to a unique solution. Explain what this means for the values
of the predictor variable.

3.2 A 100 � (1 � �)% prediction interval for y0 given a new observation x0 has
limits

xT
0 �̂ � tn�p,�=2 � s

q
1 + xT

0 (X T X )�1x0,

where �̂ is the p-dimensional vector of least-squares estimates, s is the error
standard deviation estimate and tn�p,�=2 is the quantile of a t-distribution with
n � p degrees of freedom which has right tail probability �=2. An accurate
approximation to the above prediction interval, for n !1, is given by

xT
0 �̂ � z�=2 � s,

where z�=2 is the Gaussian quantile with right tail probability �=2. Show
analytically how this approximation is derived, considering again the simple
linear model in 3.1 where p = 2. Assume that for n ! 1: (i)

Pn
i=1 x2

i =n
is bounded and (ii) the sample variance of the predictor variable does not
converge to zero.

3.3 The least-squares estimator �̂ = (X T X )�1X T Y minimises the following ob-
jective function

R(�) = (Y � X�)T (Y � X�).

Suppose that we want to minimise R(�) subject to a constraint of the form
qT� = c, where q is a p�1 vector and c is some constant. This is equivalent
to minimising the corresponding Lagrangian form

Rc(�,�) = (Y � X�)T (Y � X�)� 2�(qT� � c),

where scalar � is the Lagrange multiplier. Show that the least-squares esti-
mator in this case is given by

�̂
c

= �̂ + (X T X )�1q
h
qT (X T X )�1q

i�1
(c � qT �̂).

[Hints: Work with the gradient of Rc(�,�) and solve with respect to � and �.
You do not need to use second partial derivatives in order to show that �̂

c
is

a minimum as Rc(�,�) is convex.]
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Q4 4.1 Consider a Normal linear regression statistical model yi =
h
1, x>i

i
� + �i with

�i � N(0,�2) for i = 1, ..., .n, with p explanatory variables fx1, ..., xpg, un-
known regression coefficients �, unknown variance �2 and n observations.

(i) Show that the Akaike Information Criterion can be written as

AIC = n log
 

SSE
n

!
+ n log (2�) + n + 2 (p + 2)

where SSE is the residual sum of squares.
(ii) Consider the full regression model denoted as A and a reduced regres-

sion model denoted as B. B is nested within A. Show that

AICB � AICA = n log
 

pA � pB

n � pA
F + 1

!
� 2 (pA � pB)

where indexes �A and �B indicate that the associated quantities are based
on the “Full model” and “Reduced model” correspondingly. F denotes
the test statistic of the corresponding sequential ANOVA table for testing
the adequacy of model B against model A.

(iii) For large number of observations, i.e. n ! 1, show that removing one
continuous regressor from the full regression model based on the AIC
criterion is equivalent to removing it based on a marginal t-test on the
associated regression coefficient, and specify the rejection area.

4.2 Consider a Normal linear regression statistical model y = X>
� + � with � �

N(0, In�
2), where � 2 R

q, with n observations f(yi , xi)g
n
i=1. Consider the

following statistic

Mi =
det

�
Var

�
�̂(i)

��
det

�
Var

�
�̂
�� , i = 1, ..., n ;

where the hat �̂ indicates the MLE of the associated parameter, and the index
�(i) indicates that the associated quantity has been computed by omitting the
i-th observation.

(i) Derive that

Mi =
 

MSE(i)

MSE

!q 1
1� hi

, i = 1, ..., n ;

where hi = x>i (X>X )�1x i and MSE denotes the Mean Square Error in
the corresponding regression.

(ii) Assume that the number of observations n is large. First, describe how
the magnitude of Mi behaves when the i-th observation is an outlier but
not influential point. Then, describe how the magnitude of Mi behaves
when the i-th observation is an influential point but not an outlier. Finally,
describe around what value Mi may be if the i-th observation is neither
an outlier nor an influential point.
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Q5 5.1 Let �1 and �2 be two independent uniform random variables on [0, 1]. Sup-
pose X1 = �1, X2 = �2, X3 = �1 + �2, and X4 = �1 � �2.

(i) Compute the correlation matrix R of X = (X1, X2, X3, X4)>, and show
that 
1 =

�
1p
2
, 1p

2
, 1, 0

�>
and 
2 =

�
1p
2
,� 1p

2
, 0, 1

�>
are eigenvectors of R

corresponding to the nontrivial eigenvalue.
(ii) How many normalised Principal Components (PCs) are important? Com-

pute the normalised PCs of X , compute the proportion of variance that
each explain, and interpret them.

(iii) Explain which potential issue you could address if you perform a PC
regression where Y is regressed on the important normalised PC’s of
X , instead of regressing Y on fX1, X2, X3, X4g.

5.2

(i) Consider a Normal linear regression model Y = Z� + � with normaly
distributed errors �, where the arithmetic average of Y is zero (Ȳ = 0)
and the n�p design matrix Z has columns with arithmetic averages zero
Z̄j = 0, j = 1, ..., p. Let W = (W 1, ..., W p) be the Principal Components
(PCs) of Z . Assume that the true vector of the regression coefficients
� is in the direction of the j-th eigenvector of Z>Z . Show that when Y
is regressed on W , apart from the random error term �, the j-th PC W j

alone will contribute everything to the fit, while the remaining PCs will
contribute nothing.

(ii) Based on part (i), comment in detail about the use of the naive imple-
mentation of the principal component regression. Naive implementa-
tion of PC regression describes the procedure where: one computes
the PCs of Z , chooses a subset of PCs corresponding to eigenvalues
greater than a threshold value, and regresses Y against this subset of
PCs.
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