

EXAMINATION PAPER

Examination Session: May/June

2021

Year:

Exam Code:

MATH3091-WE01

Title:

Dynamical Systems III

Time (for guidance only):	3 hours							
Additional Material provided:								
Materials Permitted:								
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.						

Instructions to Candidates:	Credit will be given for your answers to all questions. All questions carry the same marks.					
	Please start each question on a new page. Please write your CIS username at the top of each page.					
	To receive credit, your answers must show your working and explain your reasoning.					

Revision:

Q1 1.1 Consider the 2×2 matrix

$$A = \begin{pmatrix} 0 & 9 \\ -1 & 6 \end{pmatrix} .$$

Determine the exponential $\exp(\lambda A)$, where λ is a real number.

- **1.2** Use the above result to obtain the solution, $\mathbf{x}(t)$, of the linear two-dimensional dynamical system $\dot{\mathbf{x}} = A\mathbf{x}$ with initial condition $\mathbf{x}(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
- 1.3 Draw the corresponding phase flow. Explain your answer.
- **1.4** For the following choices of 2×2 matrices *B*, decide if the linear dynamical system $\dot{x} = Bx$ is topologically conjugate to $\dot{x} = Ax$ and explain your reasoning

$$B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

- **1.5** For a linear dynamical system $\dot{x} = Dx$, consider a map $y = \xi(x) = e^{C}x$ with a matrix *C* that satisfies CD = DC. Show that this implies $\dot{y} = Dy$.
- Q2 Consider the two-dimensional dynamical system

$$\dot{x} = 3x + 2y + 2y^3$$
, $\dot{y} = -2x - 3y - 2x^3$.

- **2.1** Explain why the origin is a hyperbolic critical point.
- **2.2** Employ the Picard iteration scheme to find an equation for the stable and unstable manifolds respectively, in the vicinity of the origin at the leading non-trivial order.
- **2.3** State the stable manifold theorem and verify that your solution in **2.2** is consistent with it.
- 2.4 Draw a potential phase diagram in your favourite coordinate system using *only* the results of questions 2.1-2.3. Explain your answer.
- **Q3** The origin, (x, y) = (0, 0), is the unique critical point of the two-dimensional dynamical system

$$\dot{x} = -y - x^3$$
, $\dot{y} = x^5$.

- **3.1** Find a Lyapunov function in a domain that contains the origin.
- **3.2** Prove that the origin is asymptotically stable. You may quote known theorems, but you need to explain how the assumptions of these theorems are satisfied in your argument.

Page number																
L						9	۰.	_	٤.	n						
L						J		υ		J						
Ľ																
L	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	

- **Q4** 4.1 In each of the following three cases, give an explicit example of a dynamical system $\dot{x} = F(x)$ which has an orbit $\varphi(t, x)$ such that:
 - (a) For all $p \in \varphi(t, \mathbf{x})$, $\omega(p)$ is a periodic orbit.
 - (b) For all *p* ∈ φ(*t*, **x**), ω(*p*) consists of two heteroclinic orbits and two fixed points.
 - (c) For all $p \in \varphi(t, \mathbf{x}), \alpha(p) = \omega(p) = \mathbf{x}_0$, but $\varphi(t, \mathbf{x}) \neq \mathbf{x}_0$.
 - 4.2 Now consider a two-dimensional dynamical system of the form

$$\dot{\boldsymbol{x}} = \nabla f(\boldsymbol{x})$$

and assume that *D* is a compact and positively invariant region that contains a single fixed point \mathbf{x}_0 .

- (d) Show that for every point $\mathbf{x} \in D$, $\omega(\mathbf{x}) = \mathbf{x}_0$.
- (e) Show that $\lim_{t\to\infty} \varphi(t, \mathbf{x}) = \mathbf{x}_0$ for all $\mathbf{x} \in D$.
- Q5 5.1 For the dynamical system

$$\dot{x} = \sin(\pi x)$$
$$\dot{y} = \sin(\pi y)$$

find the Poincaré index for a curve γ that follows a square with corners at $(\pm 3/2, \pm 3/2)$ in counter-clockwise direction.

5.2 Sketch the flow in phase space of the two-dimensional dynamical system

$$\dot{x} = x(x^2 - \mu) \dot{y} = -y$$

for $\mu > 0$. Using the properties of the Poincaré index, explain why the unique hyperbolic fixed point present for $\mu < 0$ is necessarily a saddle.

5.3 Use the Poincaré index for an appropriate dynamical system to show that a complex polynomial of degree *n*

$$P(z) = \sum_{i=0}^{n} c_i z^i$$

without multiple roots has *n* roots in the complex plane.

5.4 Prove that a dynamical system defined on the two-sphere S^2 cannot have a single hyperbolic fixed point.