

EXAMINATION PAPER

Examination Session: May/June

2021

Year:

Exam Code:

MATH3201-WE01

Title:

Geometry III

Time (for guidance only):	3 hours	
Additional Material provided:	Formula sheet	
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Instructions to Candidates:	Credit will be given for your answers to all questions. All questions carry the same marks.
	Please start each question on a new page. Please write your CIS username at the top of each page.
	To receive credit, your answers must show your working and explain your reasoning.

Revision:

- **Q1** 1.1 Let $\triangle A_1 A_2 A_3$ be a triangle in \mathbb{E}^2 , let $A_4 = A_1$. Let $B_i \in A_i A_{i+1}$, i = 1, 2, 3, be points on the sides of $\triangle A_1 A_2 A_3$ such that $\frac{B_i A_i}{B_i A_{i+1}} = 3$. Show that the medians of $\triangle B_1 B_2 B_3$ intersect at the same point as the medians of $\triangle A_1 A_2 A_3$.
 - **1.2** Let C_1, C_2, C_3 be circles in \mathbb{E}^2 . Suppose that C_1 does not intersect C_2 . Suppose C_3 is orthogonal to both C_1 and C_2 . Show that there exists a circle C_0 orthogonal to all three circles C_1, C_2, C_3 .
 - **1.3** Let \mathcal{C} be a circle centred at $O \in \mathbb{E}^2$ and let $A, B \in \mathcal{C}$ be points such that $\angle AOB = \gamma < \pi$. Let \mathcal{C}' be the circumscribed circle for $\triangle ABO$. Find the acute angle between \mathcal{C} and \mathcal{C}' .
 - **1.4** Let *ABC* be a spherical triangle such that $\angle A > \angle B$. Is it always true that BC > AC? Justify your answer.
- **Q2** 2.1 Let *ABCD* be a quadrilateral on the unit sphere. Let $\angle ABC = \angle CDA = \pi/2$ and AB = BC = CD = DA = a. Find *BD*.
 - **2.2** Show that there exists a spherical regular pentagon with all angles $2\pi/3$. Find its area.
 - **2.3** Let ABC be a triangle on S^2 with three acute angles (i.e. $\angle A, \angle B, \angle C < \pi/2$). Let $\triangle A'B'C'$ be the polar triangle to $\triangle ABC$. Is it possible that $\triangle A'B'C'$ also has three acute angles? Justify your answer.
 - **2.4** Let f be an isometry of S^2 . Suppose that $f \circ r = r \circ f$ for every reflection r. Describe all such isometries f. Justify your answer.
- **Q3** 3.1 In $\mathbb{R}P^2$, compute the cross-ratio [A, B, C, D] of the points A, B, C, D given by (0:1:0), (2:1:0), (1:2:0), (1:1:0) respectively.
 - **3.2** Four lines in $\mathbb{R}P^2$ are in general position if no three of them are concurrent. Is it true that the group of projective transformations acts transitively on all quadruples of lines in general position?
 - **3.3** Let a_1, a_2, a_3, a_4 be lines in $\mathbb{R}P^2$ concurrent at the point A, and let b_1, b_2, b_3 be lines concurrent at the point B. Denote $P_{ij} = a_i \cap b_j$ for $i = 1, \ldots, 4$, j = 1, 2, 3. Suppose that the lines $P_{12}P_{21}, P_{22}P_{31}, P_{32}P_{41}$ are concurrent. Show that the lines $P_{12}P_{23}, P_{22}P_{33}, P_{32}P_{43}$ are concurrent too.
 - **3.4** Formulate the statement dual to the statement in part (3.3) and prove it without referring to the proof of (3.3).

- Q4 Let C_1 , C_2 , C_3 be mutually tangent circles not passing through the same point and let C be a circle tangent to each of them.
 - **4.1** How many ways are there to chose a circle or line C so that C is tangent to each of C_1, C_2, C_3 ?
 - **4.2** Assume the circle C_4 is disjoint from C_2 and tangent to C_1 , C_3 and C. Let $P_i = C_i \cap C_{i+1}$ for i = 1, 2, 3, 4 (where $C_5 := C_1$). Show that $[P_1, P_2, P_3, P_4]$ is real.
 - **4.3** Under the assumptions of (4.2), let C_{013} be a circle or line orthogonal to the circles C, C_1, C_3 , and let C_{024} be a circle or line orthogonal to C, C_2, C_4 . Which values can the angle between C_{013} and C_{024} take?
 - **4.4** Under the assumptions of (4.2), is there a Möbius transformation which takes circles C_2 and C_4 to concentric circles of radius 1 and 2? Justify your answer.
- **Q5** Let *ABCD* be an ideal quadrilateral in \mathbb{H}^2 .
 - **5.1** Does the group of isometries $Isom(\mathbb{H}^2)$ act transitively on ideal quadrilaterals?
 - **5.2** Let l be a common perpendicular to AB and CD. Show that the lines AC, BD and l are concurrent.
 - **5.3** Suppose that the quadrilateral ABCD has an inscribed circle, i.e. a circle tangent to all four sides. Which values can the radius of the inscribed circle take?
 - **5.4** Assume that ABCD has an inscribed circle. Let r_1, r_2, r_3, r_4 be reflections with respect to AB, BC, CD, DA. Find the type of the isometry $r_4r_3r_2r_1$.