

EXAMINATION PAPER

Examination Session: May/June

2021

Year:

Exam Code:

MATH3231-WE01

Title:

Solitons III

Time (for guidance only):	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Instructions to Candidates:	Credit will be given for your answers All questions carry the same marks.	to all questic	ons.
	Please start each question on a new Please write your CIS username at th	page. he top of eac	h page.
	To receive credit, your answers mus explain your reasoning.	t show your	working and

Revision:

Q1 1.1 A field u(x, t) has energy *E* and momentum *P* given by

$$E = \frac{1}{2} \int_{-\infty}^{+\infty} dx \left[u_t^2 + u_x^2 + W'(u)^2 \right] , \qquad P = - \int_{-\infty}^{+\infty} dx \ u_t u_x ,$$

where W'(u) = dW(u)/du is the first derivative of W(u), which is a function of *u* with isolated stationary points. Consider field configurations of the form u(x, t) = f(x - vt) for a constant *v* such that |v| < 1. Find a lower bound for the linear combination E - vP in terms of a conserved topological charge, which only depends on the asymptotic values of the field at spatial infinity.

- **1.2** Show that the lower bound for E vP is saturated if u(x, t) = f(x vt) obeys the equation of motion $u_{tt} u_{xx} + W'(u)W''(u) = 0$ with appropriate boundary conditions, which you should derive from the data in question 1.1.
- **1.3** At t = 0, the associated linear problem for a localised solution u(x, t) of the KdV equation has a single bound state, with unnormalised eigenfunction $\psi(x) = \exp(-2|x|)$.
 - (i) What is the corresponding normalisation constant c_1 in the scattering data for u(x, 0)?
 - (ii) What does c_1 become a time *t* later, when u(x, 0) has evolved into u(x, t)? Justify your answer briefly with reference to the asymptotic behaviour of the *B* operator in the Lax pair for the KdV equation.
- **1.4** (i) Define the Wronskian W[f, g] between two functions f(x) and g(x), and show that if *f* and *g* are linearly dependent then W[f, g] = 0.
 - (ii) Show that if (a) W[f, g] = 0 on some interval *I*, and (b) at least one of *f* and *g* is never zero on *I*, then *f* and *g* are linearly dependent on *I*.
 - (iii) Find a pair of infinitely-differentiable functions for which condition (a) from part (ii) holds but not condition (b), which are *not* linearly dependent. (Hint: you can use without proof the fact that the 'bump function' b(x), defined to be equal to $e^{-1/(1-x^2)}$ for |x| < 1 and zero otherwise, is infinitely differentiable for all $x \in \mathbb{R}$.)

Exam code MATH3231-WE01

Q2 Consider the following solution of the sine-Gordon equation:

$$u(x, t) = 4 \arctan(t \operatorname{sech}(x))$$
.

- **2.1** Show that this solution contains a kink and an anti-kink.
- **2.2** Find the approximate trajectories $x_k(t)$ and $x_{ak}(t)$ of the centres of the kink (k) and the antikink (ak) at early times (large and negative *t*) and late times (large and positive *t*). Sketch these trajectories in the (*x*, *t*) plane. Finally, calculate the velocity $v_{k/ak}(t) = \dot{x}_{k/ak}(t)$ and the acceleration $a_{k/ak}(t) = \ddot{x}_{k/ak}(t)$ of the kink and the anti-kink at early and late times, and specify their signs.
- **2.3** Calculate the energy

$$E = \int_{-\infty}^{+\infty} dx \left[\frac{1}{2} u_t^2 + \frac{1}{2} u_x^2 + 1 - \cos(u) \right]$$

of a single static kink or anti-kink, which is described by the field

$$u(x, t) = 4 \arctan\left(\exp(\pm(x - x_0))\right) .$$

You may use without proof the integral

$$\int_{-\infty}^{+\infty} dx \, \operatorname{sech}^2(x) = 2 \; .$$

This energy E is the mass M of the kink or anti-kink.

2.4 Use the previous results and Newton's law F = Ma (force = mass \times acceleration) to find how the force F between a kink and an anti-kink depends on the distance d between them, when the distance is large. Is this force attractive or repulsive?

Q3 Let

$$[D_t^m D_x^n(F,G)](x,t) := \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial t'}\right)^m \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial x'}\right)^n F(x,t)G(x',t') \bigg|_{\substack{x' = x \\ t' = t}},$$

where *m*, *n* are non-negative integers and *F*, *G* are any functions of *x* and *t*. It is known that, if a pair of functions f(x, t) and g(x, t) obey the system of equations

$$\begin{cases} (D_x^3 + D_t)(f, g) = 0\\ D_x^2(f, f) + D_x^2(g, g) = 0 \end{cases},$$

then the field u(x, t) given by

$$u = 2 \frac{\partial}{\partial x} \arctan(g/f)$$

is a solution of the mKdV equation $u_t + 6u^2u_x + u_{xxx} = 0$.

3.1 Show that

$$u=2\frac{D_x(g,f)}{g^2+f^2}\;.$$

3.2 Now assume that *f* and *g* take the form

 $f(x, t) = 1 + \epsilon \exp[\theta(x, t)], \qquad g = 1 + \epsilon \exp[\hat{\theta}(x, t)],$

where ϵ is a formal expansion parameter and

$$\theta(x, t) = ax + bt + c$$
, $\hat{\theta}(x, t) = \hat{a}x + \hat{b}t + \hat{c}$,

with constants $a, b, c, \hat{a}, \hat{b}, \hat{c}$. Working order by order in ϵ , find a real solution of the system of equations which depends on both x and t.

3.3 Find the corresponding solution u(x, t) of the mKdV equation.

- **Q4 4.1** Explain, in terms of their actions on other functions, what it means for two differential operators to be equal, and what it means for a differential operator to be multiplicative. If D = d/dx and g(x) is a general function of x, show that $Dg = gD + g_x$ as differential operators, and derive a formula expressing D^2g as a sum of terms in which all powers of D appear on the right.
 - **4.2** Let $L = D^2 + u(x)$, with u(x) some given function, and let $B = \alpha(x)D + \beta(x)$. Giving full details of your calculations, find the most general forms of the functions $\alpha(x)$ and $\beta(x)$ such that [L, B] is multiplicative. If *u* also depends on *t* and $L_t + [L, B] = 0$, what partial differential equation must *u* satisfy?
 - **4.3** Now let $M = x^2D^2 + xD + u(x)$, with u(x) some given function, and $C = \gamma(x)D$. Find the most general form of $\gamma(x)$ such that [M, C] is multiplicative, and write down the partial differential equation for *u* that would follow from setting $M_t + [M, C]$ equal to zero.
 - **4.4** Show that $x^2D^2 + xD$ is self-adjoint with respect to the modified inner product

$$\langle f,g\rangle = \int_0^\infty f(x)^*g(x)\frac{dx}{x},$$

when acting on functions on $(0, \infty)$ for which $\langle f, f \rangle$ is finite.

number	Exam code
6 of 6	MATH3231-WE01
1	I

Q5 For this question you can assume that situations such as found in part (iii) of question **1.4** do not arise, so that any two functions for which W[f, g] vanishes will be linearly dependent.

Consider the Schrödinger equation

$$\left(-\frac{d^2}{dx^2}+V(x)\right)\psi(x)=k^2\psi(x)$$

where $V(x) \rightarrow 0$ as $x \rightarrow \pm \infty$.

- **5.1** Show that any two bound state eigenfunctions $\psi_1(x)$ and $\psi_2(x)$ sharing the same bound state eigenvalue $k^2 < 0$ must be linearly dependent. (Hint: first show that their Wronskian is constant.)
- **5.2** If V(x) is symmetric, so that V(x) = V(-x), show that all bound state eigenfunctions ψ are either even ($\psi(-x) = \psi(x)$) or odd ($\psi(-x) = -\psi(x)$). (Hint: first use the result of **5.1** to show that $\psi(x) \propto \psi(-x)$, and then consider the possible values of the proportionality constant.)
- **5.3** Now suppose that the potential V(x) from **5.2** is given by

$$V(x) = -a\delta(x+r) - b\delta(x) - a\delta(x-r)$$

where *a*, *b* and *r* are real numbers with r > 0, and $\delta(x)$ is the Dirac delta function. Setting $k = i\mu$, $\mu > 0$ and normalising your solutions such that $\psi(x) \sim e^{-\mu x}$ as $x \to +\infty$, write down the general form that even and odd bound state eigenfunctions must take in each of the regions x < -r, -r < x < 0, 0 < x < r and x > r, and the matching conditions that should be imposed at x = -r, x = 0 and x = r. In each case your solutions should depend on just two undetermined parameters *A* and *B*, say, which you can take to be the coefficients of the two exponentials in the region 0 < x < r.

- **5.4** Apply the matching conditions to the odd bound states, and eliminate *A* and *B* to find a constraint on μ that should be independent of *b*. Using a graphical method, show that this constraint has no solutions with $\mu > 0$ for $a \le 0$, and one solution with $\mu > 0$ for a > 0 if (and only if) *a* is larger than a function of *r* that you should find.
- **5.5** Repeat the analysis of **5.4** to find a constraint on the even bound states, and analyse how the number of bound states depends on *a* and *b* when both are positive. You can assume that there are never more than two even bound states.