

EXAMINATION PAPER

Examination Session: May/June

Year: 2021

Exam Code:

MATH3301-WE01

Title:

Mathematical Finance III

Time (for guidance only):	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Instructions to Candidates:	Credit will be given for your answers to all questions. All questions carry the same marks.
	Please start each question on a new page.
	Please write your CIS username at the top of each page.
	To receive credit, your answers must show your working and explain your reasoning.

Revision:

Q1 Consider the following 2-period Binomial market shown as a tree.

The interest rate is 3/4. Answer the following questions and show your work.

- 1.1 Calculate the martingale probabilities along the edges of the tree.
- **1.2** Consider the contingent claim $X = S_0 + S_1 S_2$. Calculate the arbitrage-free price of X at time 0.
- **1.3** Explain in words the meaning or significance of the price of X from part **1.2**.

Let $(W_t, t \ge 0)$ be a Brownian motion started at $W_0 = 0$.

1.4 Use Itô's formula to show that if $h : \mathbb{R} \to \mathbb{R}$ is differentiable, then

$$\int_0^t h(s) \, \mathrm{d}W_s = h(t)W_t - \int_0^t h'(s)W_s \, \mathrm{d}s, \quad (t \ge 0).$$

Define $G_0 := 0$, and, for t > 0, $G_t := t^{-1} \int_0^t W_s \, \mathrm{d}s$. Also let $Y_t := W_t - G_t$ for $t \ge 0$.

- **1.5** Show that $G_t \sim \mathcal{N}(0, \sigma_t^2)$ and $Y_t \sim \mathcal{N}(0, \sigma_t^2)$, where σ_t^2 is a function of $t \geq 0$ that you should determine.
- **1.6** Find $\mathbb{C}ov(G_t, Y_t)$.
- **1.7** Do $(G_t, t \ge 0)$ and $(Y_t, t \ge 0)$ have the same distribution as processes? Explain briefly.

г I	Ē	aç	je	'n	ū	m	be	er	-	-	-	-	-	-	-	
L						2	۰.	_	6	5						
L						J		U		J						
L																
L	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	

Q2 Consider a market consisting of two periods t = 0 and T, a stock S_t and interest compounded continuously at rate r. Assume the market has no arbitrage. There are two contingent claims X and Y as follows.

Claim X: At time t = T the holder of the claim has the right, but not the obligation, to buy 1 unit of the stock for a strike price K. If the holder does not exercise the option to buy the stock, then the holder has to pay a penalty of price J.

Claim Y: At time t = T the holder of the claim has the right, but not the obligation, to sell 1 unit of the stock for a strike price K. If the holder does not exercise the option to sell the stock, then the holder instead gains an amount J.

- **2.1** Show, with proper explanation, that the value of X at time T is $\max\{S_T K, -J\}$ and the value of Y at time T is $\max\{K S_T, J\}$.
- **2.2** Let C be the price of X at t = 0 and P be the price of Y at t = 0. Prove that $P + S_0 = C + (K + J)e^{-rT}$.
- **2.3** Prove or disprove whether the following inequalities hold for every value of J and K:

(i)
$$P \leq S_0$$
; (ii) $C \leq S_0$

You must explain your reasoning.

Q3 Consider a market $\mathcal{M} = (B_t, S_t)$ consisting of a bond and a stock as follows for t = 0, T.

$$B_0 = 1, \quad B_T = 4/3.$$

$$S_0 = 10, \quad S_T = \begin{cases} 20 & \text{with probability } 1/3, \\ 15 & \text{with probability } 1/3, \\ 5 & \text{with probability } 1/3. \end{cases}$$

A portfolio in this market is a vector $h = (x, y) \in \mathbb{R}^2$. The value of the portfolio h is $V_t^h = xB_t + yS_t$ for t = 0, T.

- **3.1** The market contains arbitrage if there is a non-zero portfolio h such that $V_0^h = 0, V_T^h \ge 0$ with probability 1 and $V_T^h > 0$ with positive probability. Prove that this market contains no arbitrage.
- **3.2** A portfolio h is replicating for a contingent claim X if $V_T^h = X$ almost surely. Consider the following two contingent claims X_1 and X_2 .

	12	if $S_T = 20$	8	if $S_T = 20$
$X_1 = \langle$	10	if $S_T = 15$	$X_2 = \begin{cases} 3 \end{cases}$	if $S_T = 15$
	6	if $S_T = 5$	1	if $S_T = 5$

For each of X_1 and X_2 , either find a replicating portfolio or prove that none exists. Show your work neatly.

- **3.3** Consider the contingent claim X_1 from part **3.2**. Find the arbitrage-free price of X_1 . Justify your answer.
- **3.4** A martingale measure for this market is a change of measure \mathbb{Q} on the stock S_T such that under \mathbb{Q} the following identity holds:

$$\frac{1}{B_T}\mathbb{E}_{\mathbb{Q}}[S_T] = S_0.$$

Find, with proper justification, all martingale measures in this market.

Q4 Suppose that $(X_t, t \ge 0)$ is an Itô process with $X_0 = x_0 > 0$, $X_t \ge 0$ for all $t \ge 0$, satisfying the stochastic differential equation (SDE)

$$dX_t = \left[2\sqrt{X_t} - \mu X_t + \sigma^2\right]dt + 2\sigma\sqrt{X_t}dW_t, \quad t \ge 0,$$

where $(W_t, t \ge 0)$ is a Brownian motion and $\mu \in \mathbb{R}$ and $\sigma > 0$ are constants.

- **4.1** For $\alpha \in \mathbb{R}$, let $Y_t = e^{\mu t/2} X_t^{\alpha}$. Derive an SDE for Y_t (you may leave the right-hand side in terms of X_t). There is a special value $\alpha = \alpha_{\star}$ for which the drift in the SDE for Y_t is deterministic. What is α_{\star} ?
- **4.2** Solve the SDE for Y_t that you obtained in question **4.1** in the special case $\alpha = \alpha_{\star}$. Hence find an expression for $X_t^{\alpha_{\star}}$.
- **4.3** Calculate $\mathbb{E}(X_t^{\alpha_*})$ and $\mathbb{Var}(X_t^{\alpha_*})$. Carefully justify your calculations.
- **4.4** Find $\lim_{t\to\infty} \mathbb{E}(X_t)$; you should consider the cases $\mu < 0$, $\mu = 0$, and $\mu > 0$.

Q5 Consider the continuous-time Black–Scholes market, with price dynamics given by

$$\mathrm{d}B_t = rB_t\,\mathrm{d}t, \qquad \mathrm{d}S_t = \mu S_t\,\mathrm{d}t + \sigma S_t\,\mathrm{d}W_t,$$

where r > 0 is the risk-free interest rate, μ and σ are constant parameters, and $(W_t, t \ge 0)$ is a Brownian motion under the real-world measure \mathbb{P} .

A contingent claim X_T with expiry time T and threshold K > 0 is given by

$$X_T = \mathbb{1}\left\{\max_{0 \le t \le T} S_t \ge K\right\}.$$

5.1 Show that the arbitrage-free price $\Pi_0(X_T)$ at time 0 of X_T can be expressed in terms of an expectation under the risk-neutral measure \mathbb{Q} satisfying

$$\mathbb{E}_{\mathbb{Q}}[X_T] = H(T, \alpha, y),$$

where α, y are functions of S_0, K, σ , and r, and

$$H(T, \alpha, y) = \mathbb{P}\left(\max_{0 \le t \le T} \left(\alpha t + W_t\right) \ge y\right).$$
(1)

5.2 By considering a change of measure under which $(\alpha t + W_t, t \ge 0)$ is a Brownian motion, show that the probability in (1) can be written in terms of

$$\mathbb{E}_{\mathbb{P}}\left[\mathrm{e}^{\alpha W_T}\,\mathbb{1}\{M_T \ge y\}\right], \text{ where } M_T := \max_{0 \le t \le T} W_t. \tag{2}$$

Give a careful explanation of the application of any theorem from lectures that you use.

5.3 Take T = 1. It can be shown that the joint distribution of W_1 and M_1 is given by

$$\mathbb{P}(M_1 \ge y, W_1 \in [x, x + \mathrm{d}x]) = \begin{cases} \phi(x) \,\mathrm{d}x & \text{if } x \ge y, \\ \phi(2y - x) \,\mathrm{d}x & \text{if } x < y, \end{cases}$$
(3)

where ϕ is the standard normal density function. Use (3) to compute (2) and hence determine $\Pi_0(X_1)$. Your answer may be written in terms of N(x), the cumulative distribution function of the standard normal distribution.

5.4 Give a brief explanation of the origin of formula (3).