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Q1 1.1 The “square-root of NOT”. Let us consider the quantum gate acting on a single
qubit defined by

√
NOT |0〉 =

(1 + i) |0〉+ (1− i) |1〉
2

,

√
NOT |1〉 =

(1− i) |0〉+ (1 + i) |1〉
2

.

Why is this gate called
√

NOT?

1.2 Using the quantum universal gate set {CNOT,H, T} construct a circuit to
implement the

√
NOT gate defined in part 1.1.

1.3 The action of the following quantum circuit on the computational basis states
can be interpreted in terms of addition modulo 8. Explain precisely what
this circuit does in terms of this interpretation, and explain why (without just
listing the outputs for all possible computational basis state inputs).

|a〉

|b〉 • • X

|c〉 • • X

Give a simple generalisation of the circuit which will implement the same ad-
dition, not modulo 8. (I.e. if the first circuit has output (x + y) mod 8 then
your circuit should have output x+y, with the same identification of x and y.)
You can use any of the standard single-qubit gates {T, S,H,X, Y, Z} as well
as controlled NOT gates with any number of controls.
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Q2 Remember that the trace-distance D(ρ̂1, ρ̂2) between two arbitrary states ρ̂1 and ρ̂2

is given by

D(ρ̂1, ρ̂2) =
1

2
Tr
(
|ρ̂1 − ρ̂2|

)
2.1 Show that the trace-distance D(ρ̂1, ρ̂2) is invariant under time-evolution.

2.2 You are now given ρ̂1 and ρ̂2, two generic mixed single-qubit states. Consider

D(Û ρ̂1Û
†, ρ̂2)

the trace distance between Û ρ̂1Û
† and ρ̂2 as a function of the unitary transfor-

mation Û .

Find the minimum and maximum value of this trace distance as we vary Û .
[Hint: Think geometrically]

2.3 The fidelity between a pure state |ψ〉 and a state ρ̂ is given by

F (|ψ〉 , ρ̂) = 〈ψ| ρ̂ |ψ〉 .

First compute the fidelity between |ψ〉, a generic pure single-qubit state, and
ρ̂, a generic mixed single-qubit state, and then find the minimum and max-
imum value of the fidelity between Û |ψ〉 and ρ̂ as a function of the unitary
transformation Û where again |ψ〉 is a generic pure single-qubit state and ρ̂ is
a generic mixed single-qubit state.

Q3 “Super-dense comparison”. Suppose we are given an unknown Boolean function f ,
i.e. a function f : {0, 1} 7→ {0, 1}.

3.1 How many bits of information are needed to decide whether f(0) = f(1) or
f(0) 6= f(1) ?

3.2 Define now a 2-qubit quantum gate given by

Ûf |a, b〉 = |a, b⊕ f(a)〉 ,

with a, b ∈ {0, 1} and ⊕ denotes the usual sum modulo 2, i.e.

a⊕ b = a+ b (mod 2) , i.e. 0⊕ 0 = 0 , 0⊕ 1 = 1⊕ 0 = 1 , 1⊕ 1 = 0 .

Evaluate Ûf on the state |+,−〉 and then specialise your result to the four
possible values for the pair {f(0), f(1)}. Remember that the states |±〉 are
given by |±〉 = (|0〉 ± |1〉)/

√
2.

3.3 Using the unitary gate Ûf can you construct a protocol such that we can
distinguish whether f(0) = f(1) or f(0) 6= f(1) with a single measurement,
hence the “Super-dense comparison” in contrast to part 3.1.

[HINT: Hadamard is your friend]
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Q4 Consider an n-qubit Hilbert space with a k-dimensional subspace spanned by k
computational basis states {|a1〉 , |a2〉 , . . . , |ak〉} for some k ∈ {1, 2, . . . , N−1} where
N = 2n and we do not know the elements of the set A = {a1, a2, . . . , ak}. We define
the states

|a〉 ≡ 1√
k

∑
α∈A

|α〉

|a⊥〉 ≡
1√

N − k

∑
α/∈A

|α〉

|φ〉 ≡ 1√
N

N−1∑
α=0

|α〉

where
∑

α/∈A denotes the sum over all integers in the interval [0, N − 1] which are
not in the set A.

4.1 Write |φ〉 in the form |φ〉 = cos θ |a⊥〉+ sin θ |a〉, giving a relation between θ, k
and N .

4.2 Express the operators M ≡ |a〉 〈a| + |φ〉 〈φ| and Uλ ≡ exp(iλM) as 2 × 2
matrices when working in the 2-dimensional subspace with basis{

|a〉 =

(
1
0

)
, |a⊥〉 =

(
0
1

)}
.

You may use the identity for the exponential of a linear combination of Pauli
σ-matrices

exp (iv · σ) = cos(v)I + i sin(v)v̂ · σ

where v ≡ |v| and v = vv̂.

4.3 Assume that we implement |φ〉 → Uλ |φ〉 for any chosen λ ∈ R and then
measure in the computational basis. What is the probability that the mea-
surement outcome will be in the set A? What is the smallest positive value of
λ to maximise this probability, and what is this maximum probability?

4.4 For k = 1, briefly comment on the similarities and differences between this
process and Grover’s algorithm.
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Q5 Suppose we wish to encode a single logical qubit in an n-qubit Hilbert space using
the code subspace given by {|0̄〉 = |00 · · · 0〉 , |1̄〉 = |11 · · · 1〉}.

5.1 Calculate nmin, the lower bound on n in order to be able to correct for up to
k bit-flips (each acting on a single qubit as |0〉 ↔ |1〉) for an arbitrary state in
the above code subspace. Show that for k = 2 the bound is n ≥ nmin = 5.

5.2 Suppose we have a set of Hermitian operators which each square to the identity.
What other property or properties must these operators satisfy in order for this
set to be an error syndrome? How does the minimum number of such operators
depend on nmin?

From now on we fix k = 2 and n = 5.

5.3 Find an error syndrome containing the minimum number of operators and
including the operators M1 = Z1Z0 and M2 = Z4Z3 where Zi denotes the
operators acting as the Pauli matrix Z = σ3 on qubit i ∈ {0, 1, 2, 3, 4} and as
the identity on the other qubits. (The subscripts on M1, M2 and σ3 do not
have this meaning.)

5.4 Explain how the error syndrome can be used to correct for arbitrary errors of
up to 2 bit-flips, or any linear superposition of such errors. You do not need to
explicitly detail every separate case but you should give enough detail to make
it clear that such error correction is possible and include a general description
of the method to both detect and correct errors. Give explicit details for the
example of a state which has been transformed into a linear superposition of
the original state |ψ〉 = α |0̄〉+β |1̄〉, the state |ψ〉 with a single bit-flip on qubit
0 and the state |ψ〉 with bit-flips on both qubits 0 and 1.
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