

## EXAMINATION PAPER

Examination Session: May/June Year: 2021

Exam Code:

MATH4041-WE01

Title:

## Partial Differential Equations IV

| Time (for guidance only):     | 3 hours |                                                                                         |
|-------------------------------|---------|-----------------------------------------------------------------------------------------|
| Additional Material provided: |         |                                                                                         |
| Materials Permitted:          |         |                                                                                         |
| Calculators Permitted:        | Yes     | Models Permitted: There is no restriction on the model of calculator which may be used. |

| Instructions to Candidates: | Credit will be given for your answers to all questions.<br>All questions carry the same marks.       |
|-----------------------------|------------------------------------------------------------------------------------------------------|
|                             | Please start each question on a new page.<br>Please write your CIS username at the top of each page. |
|                             | To receive credit, your answers must show your working and explain your reasoning.                   |
|                             |                                                                                                      |
|                             |                                                                                                      |

Revision:

**Q1** 1.1 If  $f \in \mathcal{D}'(\mathbb{R})$  is a distribution and  $\phi \in C^{\infty}(\mathbb{R})$  is a given function, show that  $g := \phi f$  defined as

$$(g,\psi)=(\phi f,\psi)\coloneqq (f,\phi\psi), \ \forall\psi\in\mathcal{D}(\mathbb{R})$$

is a distribution.

*Hint:* you need to check whether *g* is well-defined, linear and continuous.

**1.2** Recall that a distribution  $f \in \mathcal{D}'(\mathbb{R})$  is zero if and only if

$$(f, \psi) = 0, \quad \forall \psi \in \mathcal{D}(\mathbb{R}).$$

Find all distributions *f* such that

$$\phi f = 0, \tag{1}$$

Exam code

**MATH4041-WE01** 

i.e. the distribution  $\phi f$  is the zero distribution, where  $\phi : \mathbb{R} \to \mathbb{R}$  is given as  $\phi(x) = e^x$ .

We aim to find now all distributions f such that (1) holds with the choice of

$$\phi(x)=(x-1)^2.$$

**1.3** For this, show that it is enough to find *f* such that

$$(f,\psi)=0, \ \forall \psi \in \mathcal{D}(\mathbb{R}) \ \text{with} \ \psi(1)=0, \ \psi'(1)=0.$$

*Hint:* you need to show which kind of test functions you can generate in the form of  $(x - 1)^2 \Psi$ , for arbitrary  $\Psi \in \mathcal{D}(\mathbb{R})$ .

**1.4** Relying on Question **1.3**, find a nonzero *f* that satisfies (1) with  $\phi(x) = (x-1)^2$ . *Hint:* try to construct special test functions  $\psi$  that satisfy the conditions from Question **1.3**, using arbitrary test functions and some special ones. **Q2** We consider the Cauchy problem associated to Burgers' equation, i.e.

$$\begin{cases} \partial_t u + \partial_x (u^2/2) = 0, & (x, t) \in \mathbb{R} \times (0, +\infty), \\ u(x, 0) = u_0(x), & x \in \mathbb{R}. \end{cases}$$

Let  $u_0 : \mathbb{R} \to \mathbb{R}$  be given by

$$u_0(x) = \begin{cases} 3, & x < -1, \\ 0, & -1 \le x < 0, \\ 6, & 0 \le x < 1, \\ 0, & 1 \le x. \end{cases}$$

Find a possibly unbounded entropy solution (i.e. a weak integral solution that satisfies the one sided jump conditions) to this problem. To achieve this, consider the following steps.

- 2.1 Find the characteristic lines associated to the problem and sketch them.
- **2.2** Introduce possible shock curves that satisfy the Rankine-Hugoniot condition. If there is a need for 'void filling', introduce either possible new shocks or rarefaction waves.
- **2.3** Write down the candidate for the global entropy solution (we allow this to be unbounded; you do not need to verify that this satisfies the definition of the entropy solution).

| number | Exam code     |
|--------|---------------|
| 4 of 6 | MATH4041-WE01 |
|        |               |

**Q3** Let  $\Omega \subseteq \mathbb{R}^2$  be a given domain with smooth boundary and let  $V : \Omega \to \mathbb{R}$  be a given smooth function. Furthermore, we consider  $\Gamma := \partial \Omega$  (the boundary of  $\Omega$ ) and  $g : \Gamma \to \mathbb{R}$  to be a given smooth function. For the unknown function  $u : \Omega \to \mathbb{R}$ , we consider the boundary value problem

$$\begin{cases} \frac{1}{2} |\nabla u(\boldsymbol{x})|^2 = V(\boldsymbol{x}), & \boldsymbol{x} = (x_1, x_2) \in \Omega, \\ u(\boldsymbol{x}) = g(\boldsymbol{x}), & \boldsymbol{x} \in \Gamma. \end{cases}$$
(2)

Here we use the notation  $|\boldsymbol{a}| := \sqrt{a_1^2 + a_2^2}$ , for any  $\boldsymbol{a} = (a_1, a_2) \in \mathbb{R}^2$ .

- **3.1** With respect to linearity (linear, semi-linear, etc.), what is the type of the PDE in (2)? Justify your answer!
- **3.2** If  $V(\mathbf{x}) = -\exp(-|\mathbf{x}|^2)$  and *g* is arbitrary, show that the problem (2) does not have a classical solution.

For the following questions, let us set  $\Omega = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 > 0\}$ ,  $V(\mathbf{x}) = \frac{1}{2}|\mathbf{x}|^2$ and  $g(\mathbf{x}) = 0$ . We aim to find a solution to (2) by the method of characteristics. For this, use the parameter  $s \in \mathbb{R}$  to give a parametrisation of  $\Gamma$ . Denote the characteristics by  $\mathbf{X}(\tau, s) = (X_1(\tau, s), X_2(\tau, s)), (\tau \ge 0, s \in \mathbb{R})$  and the solution along the characteristics by  $z(\tau, s) = u(\mathbf{X}(\tau, s)), (\tau \ge 0, s \in \mathbb{R})$ .

**3.3** By the nature of the problem, we need to introduce a new variable  $P(\tau, s) = (P_1(\tau, s), P_2(\tau, s)), (\tau \ge 0, s \in \mathbb{R})$  by setting

$$oldsymbol{P}( au, oldsymbol{s}) = 
abla oldsymbol{u}(oldsymbol{X}( au, oldsymbol{s})), \ au > 0, \ oldsymbol{s} \in \mathbb{R}.$$

Find an ODE system satisfied by  $(\mathbf{X}(\tau, s), \mathbf{P}(\tau, s), z(\tau, s))$  together with the corresponding initial conditions. *Hint:* compute  $\partial_{\tau} \mathbf{P}$  and differentiate the PDE in (2) with respect to  $x_1$  and  $x_2$ . One of the equations should be  $\partial_{\tau} \mathbf{X} = \mathbf{P}$ .

- **3.4** Solve the ODE system that you have found in Question **3.3**.
- **3.5** By inverting the flow, find a local solution to the PDE in (2) in a neighbourhood of  $\Gamma$ . Determine this neighbourhood as well.
- **3.6** Is the solution that you have found in Question **3.5** global? Can you find other solutions? Justify your answers!

| je number | Exam code     |
|-----------|---------------|
| 5 of 6    | MATH4041-WE01 |
| I         |               |

**Q4** Let  $n \ge 2$  be a given integer and let  $\Omega \subset \mathbb{R}^n$  be a given bounded, connected open set with smooth boundary. Let moreover  $f : \mathbb{R} \to \mathbb{R}$  be a given continuous function such that  $|f(s)| \le C_f |s|$  for all  $s \in \mathbb{R}$ , for some  $C_f > 0$ . We are interested in the solutions  $u : \Omega \to \mathbb{R}$  to the boundary value problem

$$\begin{cases} \Delta^2 u = f(u), & \text{in } \Omega, \\ u = \partial_{x_i} u = 0, \ i \in \{1, \dots, n\}, & \text{on } \partial\Omega. \end{cases}$$
(3)

For a four times differentiable function  $u : \Omega \to \mathbb{R}$  we use the notation

$$\Delta^2 u := \Delta(\Delta u) = \sum_{i,j=1}^n \partial_{x_i} \partial_{x_j} \partial_{x_j} \partial_{x_j} u.$$

**4.1** Show that there exists a constant  $C = C(n, \Omega) > 0$  depending only on  $\Omega$  and n, such that for any  $u \in C^2(\overline{\Omega})$  with  $u = \partial_{x_i}u = 0$ , on  $\partial\Omega$ ,  $i \in \{1, ..., n\}$ , we have

$$\|
abla u\|_{L^2(\Omega)}\leq C\|\Delta u\|_{L^2(\Omega)}.$$

**4.2** Deduce from Question **4.1** that there exists a constant  $\tilde{C} = \tilde{C}(n, \Omega)$  depending only on  $\Omega$  and n, such that for any  $u \in C^2(\overline{\Omega})$  with  $u = \partial_{x_i}u = 0$ , on  $\partial\Omega$ ,  $i \in \{1, ..., n\}$ , we have

$$\|u\|_{L^2(\Omega)}\leq \tilde{C}\|\Delta u\|_{L^2(\Omega)}.$$

- **4.3** Show that the constant function 0 is always a classical solution to the problem (3).
- **4.4** We say that  $u \in C^2(\overline{\Omega})$  is a weak solution to (3), if

$$\int_{\Omega} (\Delta u) (\Delta \varphi) d\boldsymbol{x} = \int_{\Omega} f(u) \varphi d\boldsymbol{x},$$

for all  $\varphi \in C^2(\overline{\Omega})$ , with  $\varphi = \partial_{x_i}\varphi = 0$  on  $\partial\Omega$ ,  $i \in \{1, ..., n\}$ . Give a sufficient condition involving  $n, \Omega$  and  $C_f$  that ensures that the problem (3) does not have a nonzero weak solution in the class  $C^2(\overline{\Omega})$ .

*Hint:* use a specific test function in the weak formulation, then use the previously established inequalities and detect a condition which leads to a contradiction.

| г<br>I | Page number | ר – –<br>ו |
|--------|-------------|------------|
|        | 6 of 6      | 1          |
| i.     |             | i          |
| L      |             | J          |

**Q5** Let  $n \ge 2$  be a given integer, let  $\Omega \subset \mathbb{R}^n$  be a given bounded connected open set with smooth boundary  $\partial \Omega$ . Let moreover  $g : \partial \Omega \to \mathbb{R}$  be a given continuous function. We consider the solution to the boundary value problem

$$\begin{cases} \Delta u = 0, & \text{in } \Omega, \\ u = g, & \text{on } \partial \Omega. \end{cases}$$
(4)

Recall that  $u \in C^1(\overline{\Omega})$  is said to be a weak solution to (4) if u = g on  $\partial \Omega$  and

$$\int_{\Omega} \nabla u \cdot \nabla \varphi \mathrm{d} \boldsymbol{x} = 0,$$

for all  $\varphi \in C^1(\overline{\Omega})$  with  $\varphi = 0$  on  $\partial \Omega$ .

- **5.1** Show that (4) has at most one weak solution.
- **5.2** Determine the energy functional and the minimisation problem for which the weak formulation of (4) can be seen as a first order necessary optimality condition.
- **5.3** Fix  $\mathbf{x}_0 \in \Omega$  and r, R > 0 such that  $B_r(\mathbf{x}_0) \subset B_R(\mathbf{x}_0) \subset \Omega$ , where  $B_{\rho}(\mathbf{y})$  denotes the open ball of radius  $\rho > 0$  centered at  $\mathbf{y}$ . Suppose that  $u \in C^1(\overline{\Omega})$  is a weak solution to (4). Show that there exists a constant C > 0 such that

$$\int_{B_r(x_0)} |\nabla u(\boldsymbol{x})|^2 \mathrm{d} \boldsymbol{x} \leq \frac{C}{(R-r)^2} \int_{B_R(x_0) \setminus B_r(x_0)} |u(\boldsymbol{x}) - \lambda|^2 \mathrm{d} \boldsymbol{x}, \; \forall \lambda \in \mathbb{R}.$$

*Hint:* consider a special test function of the form  $\varphi := (u - \lambda)\eta^2$  and plug it into the weak formulation satisfied by u. Here choose  $\eta \in C_c^1(\Omega)$  such that  $0 \le \eta \le 1$ ,  $\eta \equiv 1$  on  $B_r(\mathbf{x}_0)$  and  $\eta \equiv 0$  on  $\Omega \setminus B_R(\mathbf{x}_0)$ . What property does  $\nabla \eta$  need to satisfy? You do not need to construct such an  $\eta$  explicitly.