

EXAMINATION PAPER

Examination Session: May/June

2021

Year:

Exam Code:

MATH41220-WE01

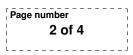
Title:

Analysis

Time (for guidance only):	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Instructions to Candidates:	Credit will be given for your answers to all questions. All questions carry the same marks.				
	Please start each question on a new page. Please write your CIS username at the top of each page.		h page.		
	To receive credit, your answers must show your working and explain your reasoning.				

Revision:



- **Q1 1.1** Consider the relation, \sim on [0, 1] defined as, $x \sim y$ if and only if $x y \in \mathbb{Q}$. Prove that \sim is an equivalence relation, namely
 - (i) Prove that for all $x \in [0, 1]$, $x \sim x$ (Reflexive property).
 - (ii) Prove that for all $x, y \in [0, 1]$, if $x \sim y$, then $y \sim x$ (Symmetric property).
 - (iii) Prove for all $x, y, z \in [0, 1]$, if $x \sim y$ and $y \sim z$, then $x \sim z$ (Transitivity property).
 - **1.2** Denote the equivalence class defined by \sim containing *x* by $[x]_{\sim}$ and the quotient set by *A*. Consider the set $E \subset [0, 1]$ obtained by choosing a unique point from each equivalence class in *A*. Let $r \in \mathbb{Q}$, and consider

$$E_r = \{y \in \mathbb{R} \mid y = x + r, x \in E\}.$$

- (i) Prove that, for all $r, s \in \mathbb{Q}$, $r \neq s$, $E_s \cap E_r = \emptyset$.
- (ii) Denote by $S = \bigcup_{r \in [-1,1] \cap \mathbb{Q}} E_r$ and prove that $[0,1] \subset S \subset [-1,2]$.
- **1.3** Prove that the set *E* is not Lebesgue measurable.
- **Q2** Let $A \subset \mathbb{R}$ be a subset and $x \in \mathbb{R}$ a point. Define $d(x, A) = \inf_{y \in A} |x y|$. Denote by \overline{A} the closure of A and by A^c the complement of A in \mathbb{R} . Show the following.
 - **2.1** For a fixed *A* the function f(x) = d(x, A) is continuous.
 - **2.2** $\{x \mid d(x, A) = 0\} = \overline{A}$.
 - **2.3** A set A is closed if and only if d(x, A) > 0 for any $x \in A^c$.
 - **2.4** Does the statement in 2.2 hold if we define $d(x, A) = \sup_{y \in A} |x y|$ instead? Justify your response.

Q3 Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of Lebesgue integrable, measurable functions $f_n : \mathbb{R} \to \mathbb{R}$ which converge almost everywhere to a limit function

$$f(x) = \lim_{n \to \infty} f_n(x).$$

Exam code

MATH41220-WE01

The limit function *f* is measurable, integrable and it satisfies the following:

$$\int_{\mathbb{R}} f = \lim_{n \to \infty} \int_{\mathbb{R}} f_n.$$

Suppose that for all $n \in \mathbb{N}$, $f_n \ge 0$.

3.1 Consider the auxiliary sequence $g_n := \min(f_n, f)$. Show that

$$\lim_{n\to\infty}\int_{\mathbb{R}}g_n(x)dx=\int_{\mathbb{R}}f(x)dx$$

3.2 Show that

$$0 = \lim_{n \to \infty} \int_{\mathbb{R}} |f_n(x) - f(x)| dx.$$

Q4 4.1 Consider the space of functions

 $C^{1}[-1,1] = \{f : [-1,1] \rightarrow \mathbb{R} : f \text{ is differentiable}, f' \text{ is continuous}\},\$

where f' denotes the first derivative of f. Define $\|\cdot\|_1 : C^1[-1, 1] \to \mathbb{R}$ as

$$||f||_1 = \left(\int_{-1}^1 (f^2 + (f')^2)\right)^{1/2} = \left(||f||_{L^2}^2 + ||f'||_{L^2}^2\right)^{1/2}.$$

- (i) Prove that $\|\cdot\|_1$ is a norm on $C^1[-1, 1]$.
- (ii) For $n \in \mathbb{N}$, we define $f_n : \mathbb{R} \to \mathbb{R}$ as

$$f_n(x) = \sqrt{x^2 + \frac{1}{n^2}}.$$

Does the sequence $(f_n)_n$ converge in $(L^2[-1, 1], \|\cdot\|_{L^2})$? Justify your response.

- (iii) Does the sequence $(f_n)_n$ converge in $(C^1[-1, 1], \|\cdot\|_1)$? Justify your response.
- **4.2** For $n \in \mathbb{N}$, we define $g_n : \mathbb{R} \to \mathbb{R}$ as

$$g_n(x) = \frac{1}{2n} \sqrt{|\cos(nx)|} \chi_{[0,(\pi\sqrt{n})/2]}(x).$$

Is $(g_n)_n$ a Cauchy sequence in $(L^2(\mathbb{R}), \|\cdot\|_{L^2})$? Give a full justification of your response.

4.3 Let $E \subseteq \mathbb{R}$ be measurable. Let $0 < \alpha < 1$ and $1 \le p \le q \le s \le \infty$ be such that

$$\frac{1}{q} = \frac{\alpha}{p} + \frac{1-\alpha}{s}.$$

Suppose that $h \in L^{p}(E) \cap L^{s}(E)$. Prove that

$$\|h\|_{L^q} \leq \|h\|_{L^p}^{\alpha}\|h\|_{L^s}^{1-\alpha}.$$

ED01/2021

CONTINUED

Q5 5.1 Let $k \in \mathbb{N}$ and consider the space of functions

 $C[k, k+1] = \{f : [k, k+1] \rightarrow \mathbb{R} : f \text{ is smooth} \}$

(by smooth we mean infinitely continuously differentiable) with the norm

$$||f||_{\max} = \max_{x \in [k,k+1]} |f(x)|.$$

- (i) Does there exist an inner product on C[0, 1] denoted $\langle \cdot, \cdot \rangle$ such that $||f||_{\max} = \sqrt{\langle f, f \rangle}$ for $f \in C[0, 1]$? Justify your response.
- (ii) Let $T : C[k, k + 1] \rightarrow \mathbb{R}$ be the functional defined as

$$T(f) = \frac{d^k}{dx^k} f(x) \bigg|_{x=k+1}.$$

For which $k \in \mathbb{N}$, $k \ge 2$, is *T* a bounded linear functional on $(C[k, k+1], \|\cdot\|_{max})$? Justify your response.

- **5.2** For each of the following statements, either provide a proof to show that the statement is true, or construct a counterexample to show that the statement is false.
 - (i) Let \mathcal{H} be an infinite dimensional Hilbert space. Let (x_n) be an orthonormal sequence of \mathcal{H} . Then any subsequence of (x_n) converges in \mathcal{H} with respect to the norm $\|\cdot\| = \sqrt{\langle \cdot, \cdot \rangle}$.
 - (ii) Let \mathcal{H} be a separable Hilbert space. Let M be an orthonormal subset of \mathcal{H} . Then M is a countable subset of \mathcal{H} .
- **5.3** Let $f : \mathbb{R} \to \mathbb{R}$ be a 2π -periodic function. Suppose that there exist constants $0 < \beta \le 1$ and C > 0 such that

$$|f(x+h)-f(x)| \leq C|h|^{\beta} \quad \forall x, h.$$

Recall that the Fourier coefficients of f are defined as

$$a_k(f)=rac{1}{2\pi}\int_{-\pi}^{\pi}f(y)e^{-iky}\,dy,\quad k\in\mathbb{Z}.$$

Prove that there exists a constant A > 0 such that

$$|a_k(f)| \leq rac{A}{|k|^{eta}}, \quad k \in \mathbb{Z}.$$