

EXAMINATION PAPER

Examination Session:	Year:		Exam Code:		
May/June	2021		MATH4151-WE01		
Title: Topics in Algebra and Geometry IV					
Time (for guidance only): 3 hours	3 hours			
Additional Material prov	ided:				
Materials Permitted:					
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.			
Instructions to Candidat		Credit will be given for your answers to all questions. All questions carry the same marks.			
		Please start each question on a new page. Please write your CIS username at the top of each page.			
		To receive credit, your answers must show your working and explain your reasoning.			
	1		Revision:		

Q1 1.1 For $\tau \in \mathbb{H}$ fixed and $z \in \mathbb{C}$ we define

$$h(z) = h_{\tau}(z) := \prod_{n=1}^{\infty} \left(1 - q^{n-1/2}e^{2\pi iz}\right),$$

where $q = e^{2\pi i \tau}$. Carefully show that h(z) defines an entire function. Determine the zeros of h(z) and their order.

1.2 For a function f on \mathbb{H} , and an integer $k \in \mathbb{Z}$, we define the operator

$$(\delta_k f)(\tau) := \frac{\partial f}{\partial \tau}(\tau) + \frac{k}{2i \operatorname{Im}(\tau)} f(\tau), \quad \tau \in \mathbb{H}.$$

Assuming that the derivative $\frac{\partial f}{\partial \tau}$ exists, show that for all $\gamma \in SL_2(\mathbb{Z})$ we have the equality of functions,

$$\delta_k(f|_k\gamma) = (\delta_k f)|_{k+2}\gamma.$$

Here, for an element $\gamma \in SL_2(\mathbb{Z})$, an integer m, and a function $g : \mathbb{H} \to \mathbb{C}$, we define the function $g|_m \gamma : \mathbb{H} \to \mathbb{C}$ by

$$(g|_{m}\gamma)(\tau) := j(\gamma, \tau)^{-m}g(\gamma, \tau).$$

- **Q2** With the notation as in Q1.1, set g(z) = h(z)h(-z).
 - **2.1** Show

$$g(z + 1) = g(z)$$
 and $g(z + \tau) = -q^{-1/2}e^{-2\pi iz}g(\tau)$.

- **2.2** Set $f(z) := \frac{g(z+\frac{1}{2})}{g(z)}$. Show $f(z+\tau) = -f(z)$ and conclude that f is an elliptic function for the lattice $2\tau\mathbb{Z} + \mathbb{Z}$.
- **2.3** Explicitly describe the zeros and poles of f on all of \mathbb{C} and directly verify Theorems Liouville B,C,D for f.
- **Q3** 3.1 Let $\Omega = \mathbb{Z}\sqrt{-2}+\mathbb{Z}$ and let $\wp(z)$ be the Weierstrass \wp -function associated to Ω . Show that $\wp(\sqrt{-2}z)$ is an even elliptic function with respect to Ω . Determine the location of its poles and their order and conclude that $\wp(\sqrt{-2}z)$ has order 4.
 - **3.2** Express $\wp(\sqrt{-2}z)$ as a rational function in $\wp(z)$ using the half-lattice values e_1, e_2, e_3 as coefficients.

Q4 We consider the function

$$artheta(au) \coloneqq \theta\left(rac{ au}{2}
ight) = \sum_{n\in\mathbb{Z}} e^{\pi i n^2 au}, \quad au \in \mathbb{H},$$

where $\theta(\tau)$ is the Jacobi theta series. Show that,

- **4.1** $\vartheta(\tau) + \vartheta(\tau + 1) = 2\vartheta(4\tau)$.
- **4.2** $i \vartheta^2 \left(1 \frac{1}{\tau}\right) = \tau (\vartheta(\tau/4) \vartheta(\tau))^2$.
- **4.3** Define $f(\tau) := \vartheta^4(\tau) \vartheta^4(\tau+1) + \tau^{-2}\vartheta^4(1-\frac{1}{\tau})$. Show that $f(\tau+1) = -f(\tau)$ and $f(-1/\tau) = -\tau^2 f(\tau)$. Conclude that $f(\tau)$ is the zero function.
- **4.4** Define the function $g(\tau) := \frac{\vartheta^8(\tau)\vartheta^8(\tau+1)\vartheta^8(1-\frac{1}{\tau})}{\tau^4}$. Show that $g(\tau) = \alpha\Delta(\tau)$ for some $0 \neq \alpha \in \mathbb{C}$. Here $\Delta(\tau)$ denotes the discriminant function.
- **Q5** Let $f \in S_k(\Gamma)$ and $g \in M_\ell(\Gamma)$ be modular forms of weight k > 0 and $\ell > 0$ respectively for the modular group $\Gamma = SL_2(\mathbb{Z})$. We write their q-expansions as $f(\tau) = \sum_{n=1}^{\infty} a_n q^n$ and $g(\tau) = \sum_{n=0}^{\infty} b_n q^n$, and we assume $a_n, b_n \in \mathbb{R}$ for all n. We set $c_n := a_n b_n$, and define $D(s) := \sum_{n=1}^{\infty} c_n n^{-s}$ with $s \in \mathbb{C}$.
 - **5.1** Show that the series D(s) converges absolutely for $Re(s) > \frac{k}{2} + \ell$. If we further assume that g is also a cusp form, show that the series D(s) converges absolutely for $Re(s) > 1 + \frac{k+\ell}{2}$.
 - **5.2** From now on and for the rest of this question we assume that both f and g are cusp forms and that they are also normalised Hecke eigenforms. For a prime number p, we define α_p , $\beta_p \in \mathbb{C}$ as follows:

$$1 - a_p X + p^{k-1} X^2 = (1 - \alpha_p X)(1 - \overline{\alpha_p} X), \text{ and } 1 - b_p X + p^{\ell-1} X^2 = (1 - \beta_p X)(1 - \overline{\beta_p} X).$$

Here you can assume that $|a_p| \le 2p^{\frac{k-1}{2}}$, and $|b_p| \le 2p^{\frac{\ell-1}{2}}$ for all p. Show that for all primes p, and $n \in \mathbb{N}$ we have,

$$a_{p^n} = \sum_{m=0}^n \alpha_p^m \overline{\alpha_p}^{n-m}.$$

5.3 With notation as above, show the formal power series identity:

$$\sum_{n=0}^{\infty} c_{p^n} X^n = \frac{1 - p^{k+\ell-2} X^2}{(1 - \alpha_p \beta_p X)(1 - \alpha_p \overline{\beta_p} X)(1 - \overline{\alpha_p} \beta_p X)(1 - \overline{\alpha_p} \overline{\beta_p} X)}.$$

5.4 Show that $D(2 + \frac{k+\ell}{2}) \neq 0$.