

EXAMINATION PAPER

Examination Session: May/June

2021

Year:

Exam Code:

MATH4161-WE01

Title:

Algebraic Topology IV

Time (for guidance only):	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Please start each question on a new page. Please write your CIS username at the top of each page. To receive credit, your answers must show your working and explain your reasoning.	Instructions to Candidates:	Credit will be given for your answers to all questions. All questions carry the same marks.
To receive credit, your answers must show your working and explain your reasoning.		Please start each question on a new page. Please write your CIS username at the top of each page.
		To receive credit, your answers must show your working and explain your reasoning.

Revision:

- **Q1** 1.1 Let $X = S^1 \times D^2$ be the solid torus and let $\partial X = S^1 \times S^1$ be the torus boundary. Compute the homology groups (with integer coefficients) of the quotient space $X/\partial X$.
 - **1.2** Let *W* be a compact manifold of dimension 2n + 1 with boundary $\partial W = M$. Show that for the Euler characteristic we have $\chi(M) = 2\chi(W)$. Show that the projective plane $\mathbb{R}\mathbf{P}^2$ is not the boundary of a compact manifold of dimension 3.
 - **1.3** Let *M* be a closed orientable manifold of dimension 4n+2. Show that the rank of $H_{2n+1}(M)$ (with integer coefficients) cannot be 1. You may use standard results on cup-products without proof.
- **Q2** 2.1 For $p \in \mathbb{R}^3$ and r > 0, let

$$S_{p,r}^2 = \{x \in \mathbb{R}^3 : |x - p| = r\}$$

be the 2-sphere in \mathbb{R}^3 with centre *p* and radius *r*.

Compute the homology (with integer coefficients) of the space $X \subset \mathbb{R}^3$ defined by

$$X = S^2_{(0,0,0),2} \cup S^2_{(1,0,0),1} \cup S^2_{(-1,0,0),1}.$$

2.2 We define the space $X \subset \mathbb{R}^5$ as the following union of four subsets of \mathbb{R}^5

$$\begin{aligned} X &= \{ p \in \mathbb{R}^5 : |p| = 1 \} \\ &\cup \{ (r, 0, 0, 0, 0) \in \mathbb{R}^5 : -1 \le r \le 1 \} \\ &\cup \{ (0, s, t, 0, 0) \in \mathbb{R}^5 : s^2 + t^2 \le 1 \} \\ &\cup \{ (0, 0, t, u, v) \in \mathbb{R}^5 : t^2 + u^2 + v^2 \le 1 \}. \end{aligned}$$

Compute the homology (with integer coefficients) of the space X.

Q3 3.1 Consider the set $X = \{1, 2, 3\}$ which we topologize by giving it the topology

 $\{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{1, 2, 3\}\}.$

Show that X is contractible (in other words homotopy equivalent to the space $\{p\}$ consisting of a single point) via the homotopy equivalence

$$\{\mathsf{p}\} \rightarrow X \colon \mathsf{p} \mapsto \mathsf{3}.$$

3.2 Hence or otherwise, compute the homology groups (with integer coefficients) of the space $Y = \{1, 2, 3, 4\}$ which has the topology

$$\{\emptyset, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}, \{1,2,4\}, \{1,2,3,4\}\}.$$

Q4 Let (M, d) be a metric space, and for $k \ge 0$ an integer let $\Gamma^k(M, d)$ be the set of all functions $\varphi \colon M^{k+1} \to \mathbb{Z}$, where $M^{k+1} = M \times M \times \cdots \times M$ is the cartesian product of k + 1 factors of M. Define $\delta^k \colon \Gamma^k(M, d) \to \Gamma^{k+1}(M, d)$ by

Exam code

MATH4161-WE01

$$\delta^{k}(\varphi)(x_{0},\ldots,x_{k+1}) = \sum_{i=0}^{k+1} (-1)^{i} \varphi(x_{0},\ldots,\hat{x}_{i},\ldots,x_{k+1}),$$

where \hat{x}_i means that x_i is to be omitted from the formula.

- **4.1** Show that $(\Gamma^*(M, d), \delta^*)$ is a cochain complex.
- **4.2** For $\varepsilon > 0$ let $\Gamma_{\varepsilon}^{k}(M, d) \subset \Gamma^{k}(M, d)$ consist of those functions for which $\varphi(x_{0}, ..., x_{k}) = 0$ whenever $d(x_{i}, x_{j}) < \varepsilon$ for all $i, j \in \{0, ..., k\}$ (for k = 0 this means $\varphi(x) = 0$ for all $x \in M$). Show that $\Gamma_{\varepsilon}^{*}(M, d)$ with the restriction of δ^{*} is also a cochain complex.
- **4.3** Let $\overline{\Gamma}_{\varepsilon}^{k}(M, d) = \Gamma^{k}(M, d) / \Gamma_{\varepsilon}^{k}(M, d)$ and $\overline{\delta}^{k} : \overline{\Gamma}_{\varepsilon}^{k}(M, d) \to \overline{\Gamma}_{\varepsilon}^{k+1}(M, d)$ the coboundary induced by δ^{k} . Write

$$\mathcal{H}^k_{\varepsilon}(\boldsymbol{M}, \boldsymbol{d}) = \ker \bar{\delta}^k / \operatorname{im} \bar{\delta}^{k-1},$$

and calculate $\mathcal{H}_{\varepsilon}^{k}(P, d)$ for all integers $k \geq 0$, where *P* consists of one point, and *d* is the unique metric on *P*.

- **4.4** Calculate $\mathcal{H}^{0}_{\varepsilon}(T, d)$ for all $\varepsilon > 0$, where $T = \{x_{0}, x_{1}\}$ is a set of two elements, and *d* is an arbitrary metric on *T*.
- **4.5** Assume that (M, d) is connected. Show that $\mathcal{H}^0_{\varepsilon}(M, d) \cong \mathbb{Z}$ for all $\varepsilon > 0$.
- **4.6** Give an example of a metric space (M, d) such that for all $\varepsilon > 0$ the group $\mathcal{H}^0_{\varepsilon}(M, d)$ is different from $H^0(M; \mathbb{Z})$, the 0-th singular cohomology group of M.

Q5 Let G, H, K be abelian groups.

We say that *G* satisfies property (*S*), if whenever $\varphi : G \to H$ is a homomorphism, and $\psi : K \to H$ is a surjective homomorphism, then there exists a homomorphism $\chi : G \to K$ with $\varphi = \psi \circ \chi$.

We say that *G* satisfies property (*R*), if whenever $\varphi : H \to G$ is a homomorphism, and $\psi : H \to K$ is an injective homomorphism, then there exists a homomorphism $\chi : K \to G$ with $\varphi = \chi \circ \psi$.

- **5.1** Show that *G* satisfies property (*S*) if and only if Ext(G, A) = 0 for all abelian groups *A*. Hint: For one direction, express property (*S*) in terms of ψ_* : Hom(*G*, *K*) \rightarrow Hom(*G*, *H*).
- **5.2** Show that *G* satisfies property (*R*) if and only if Ext(A, G) = 0 for all abelian groups *A*.
- **5.3** Assume that *G* satisfies property (*R*), and let *H* be a subgroup of *G*. Show that G/H has property (*R*).
- **5.4** Give an example each of a group *G* such that
 - *G* has property (*S*), but not property (*R*).
 - G does not have property (S) nor property (R).
 - *G* has property (*S*) and property (*R*).

Justify your statements, and state every result you use from the course.